ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supisolem Unicode version

Theorem supisolem 6421
Description: Lemma for supisoti 6423. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
supiso.2  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
supisolem  |-  ( (
ph  /\  D  e.  A )  ->  (
( A. y  e.  C  -.  D R y  /\  A. y  e.  A  ( y R D  ->  E. z  e.  C  y R
z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  D ) S w  /\  A. w  e.  B  ( w S ( F `  D )  ->  E. v  e.  ( F " C
) w S v ) ) ) )
Distinct variable groups:    w, v, y, z, A    v, C, w, y, z    w, D, y, z    ph, w    v, F, w, y, z   
w, R, y, z   
v, S, w, y, z    v, B, w, y, z
Allowed substitution hints:    ph( y, z, v)    D( v)    R( v)

Proof of Theorem supisolem
StepHypRef Expression
1 supiso.1 . . 3  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
2 supiso.2 . . 3  |-  ( ph  ->  C  C_  A )
31, 2jca 300 . 2  |-  ( ph  ->  ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A ) )
4 simpll 495 . . . . . . . 8  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  F  Isom  R ,  S  ( A ,  B ) )
54adantr 270 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  C
)  ->  F  Isom  R ,  S  ( A ,  B ) )
6 simplr 496 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  C
)  ->  D  e.  A )
7 simplr 496 . . . . . . . 8  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  C  C_  A )
87sselda 2999 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  C
)  ->  y  e.  A )
9 isorel 5468 . . . . . . 7  |-  ( ( F  Isom  R ,  S  ( A ,  B )  /\  ( D  e.  A  /\  y  e.  A )
)  ->  ( D R y  <->  ( F `  D ) S ( F `  y ) ) )
105, 6, 8, 9syl12anc 1167 . . . . . 6  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  C
)  ->  ( D R y  <->  ( F `  D ) S ( F `  y ) ) )
1110notbid 624 . . . . 5  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  C
)  ->  ( -.  D R y  <->  -.  ( F `  D ) S ( F `  y ) ) )
1211ralbidva 2364 . . . 4  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  ( A. y  e.  C  -.  D R y  <->  A. y  e.  C  -.  ( F `  D ) S ( F `  y ) ) )
13 isof1o 5467 . . . . . . 7  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  F : A -1-1-onto-> B
)
144, 13syl 14 . . . . . 6  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  F : A -1-1-onto-> B )
15 f1ofn 5147 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
1614, 15syl 14 . . . . 5  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  F  Fn  A )
17 breq2 3789 . . . . . . 7  |-  ( w  =  ( F `  y )  ->  (
( F `  D
) S w  <->  ( F `  D ) S ( F `  y ) ) )
1817notbid 624 . . . . . 6  |-  ( w  =  ( F `  y )  ->  ( -.  ( F `  D
) S w  <->  -.  ( F `  D ) S ( F `  y ) ) )
1918ralima 5416 . . . . 5  |-  ( ( F  Fn  A  /\  C  C_  A )  -> 
( A. w  e.  ( F " C
)  -.  ( F `
 D ) S w  <->  A. y  e.  C  -.  ( F `  D
) S ( F `
 y ) ) )
2016, 7, 19syl2anc 403 . . . 4  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  ( A. w  e.  ( F " C )  -.  ( F `  D
) S w  <->  A. y  e.  C  -.  ( F `  D ) S ( F `  y ) ) )
2112, 20bitr4d 189 . . 3  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  ( A. y  e.  C  -.  D R y  <->  A. w  e.  ( F " C
)  -.  ( F `
 D ) S w ) )
224adantr 270 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  F  Isom  R ,  S  ( A ,  B ) )
23 simpr 108 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  y  e.  A )
24 simplr 496 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  D  e.  A )
25 isorel 5468 . . . . . . 7  |-  ( ( F  Isom  R ,  S  ( A ,  B )  /\  (
y  e.  A  /\  D  e.  A )
)  ->  ( y R D  <->  ( F `  y ) S ( F `  D ) ) )
2622, 23, 24, 25syl12anc 1167 . . . . . 6  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  ( y R D  <->  ( F `  y ) S ( F `  D ) ) )
2722adantr 270 . . . . . . . . 9  |-  ( ( ( ( ( F 
Isom  R ,  S  ( A ,  B )  /\  C  C_  A
)  /\  D  e.  A )  /\  y  e.  A )  /\  z  e.  C )  ->  F  Isom  R ,  S  ( A ,  B ) )
28 simplr 496 . . . . . . . . 9  |-  ( ( ( ( ( F 
Isom  R ,  S  ( A ,  B )  /\  C  C_  A
)  /\  D  e.  A )  /\  y  e.  A )  /\  z  e.  C )  ->  y  e.  A )
297adantr 270 . . . . . . . . . 10  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  C  C_  A
)
3029sselda 2999 . . . . . . . . 9  |-  ( ( ( ( ( F 
Isom  R ,  S  ( A ,  B )  /\  C  C_  A
)  /\  D  e.  A )  /\  y  e.  A )  /\  z  e.  C )  ->  z  e.  A )
31 isorel 5468 . . . . . . . . 9  |-  ( ( F  Isom  R ,  S  ( A ,  B )  /\  (
y  e.  A  /\  z  e.  A )
)  ->  ( y R z  <->  ( F `  y ) S ( F `  z ) ) )
3227, 28, 30, 31syl12anc 1167 . . . . . . . 8  |-  ( ( ( ( ( F 
Isom  R ,  S  ( A ,  B )  /\  C  C_  A
)  /\  D  e.  A )  /\  y  e.  A )  /\  z  e.  C )  ->  (
y R z  <->  ( F `  y ) S ( F `  z ) ) )
3332rexbidva 2365 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  ( E. z  e.  C  y R z  <->  E. z  e.  C  ( F `  y ) S ( F `  z ) ) )
3416adantr 270 . . . . . . . 8  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  F  Fn  A )
35 breq2 3789 . . . . . . . . 9  |-  ( v  =  ( F `  z )  ->  (
( F `  y
) S v  <->  ( F `  y ) S ( F `  z ) ) )
3635rexima 5415 . . . . . . . 8  |-  ( ( F  Fn  A  /\  C  C_  A )  -> 
( E. v  e.  ( F " C
) ( F `  y ) S v  <->  E. z  e.  C  ( F `  y ) S ( F `  z ) ) )
3734, 29, 36syl2anc 403 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  ( E. v  e.  ( F " C ) ( F `
 y ) S v  <->  E. z  e.  C  ( F `  y ) S ( F `  z ) ) )
3833, 37bitr4d 189 . . . . . 6  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  ( E. z  e.  C  y R z  <->  E. v  e.  ( F " C
) ( F `  y ) S v ) )
3926, 38imbi12d 232 . . . . 5  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  ( (
y R D  ->  E. z  e.  C  y R z )  <->  ( ( F `  y ) S ( F `  D )  ->  E. v  e.  ( F " C
) ( F `  y ) S v ) ) )
4039ralbidva 2364 . . . 4  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  ( A. y  e.  A  ( y R D  ->  E. z  e.  C  y R z )  <->  A. y  e.  A  ( ( F `  y ) S ( F `  D )  ->  E. v  e.  ( F " C
) ( F `  y ) S v ) ) )
41 f1ofo 5153 . . . . 5  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
42 breq1 3788 . . . . . . 7  |-  ( ( F `  y )  =  w  ->  (
( F `  y
) S ( F `
 D )  <->  w S
( F `  D
) ) )
43 breq1 3788 . . . . . . . 8  |-  ( ( F `  y )  =  w  ->  (
( F `  y
) S v  <->  w S
v ) )
4443rexbidv 2369 . . . . . . 7  |-  ( ( F `  y )  =  w  ->  ( E. v  e.  ( F " C ) ( F `  y ) S v  <->  E. v  e.  ( F " C
) w S v ) )
4542, 44imbi12d 232 . . . . . 6  |-  ( ( F `  y )  =  w  ->  (
( ( F `  y ) S ( F `  D )  ->  E. v  e.  ( F " C ) ( F `  y
) S v )  <-> 
( w S ( F `  D )  ->  E. v  e.  ( F " C ) w S v ) ) )
4645cbvfo 5445 . . . . 5  |-  ( F : A -onto-> B  -> 
( A. y  e.  A  ( ( F `
 y ) S ( F `  D
)  ->  E. v  e.  ( F " C
) ( F `  y ) S v )  <->  A. w  e.  B  ( w S ( F `  D )  ->  E. v  e.  ( F " C ) w S v ) ) )
4714, 41, 463syl 17 . . . 4  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  ( A. y  e.  A  ( ( F `  y ) S ( F `  D )  ->  E. v  e.  ( F " C ) ( F `  y
) S v )  <->  A. w  e.  B  ( w S ( F `  D )  ->  E. v  e.  ( F " C ) w S v ) ) )
4840, 47bitrd 186 . . 3  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  ( A. y  e.  A  ( y R D  ->  E. z  e.  C  y R z )  <->  A. w  e.  B  ( w S ( F `  D )  ->  E. v  e.  ( F " C
) w S v ) ) )
4921, 48anbi12d 456 . 2  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  (
( A. y  e.  C  -.  D R y  /\  A. y  e.  A  ( y R D  ->  E. z  e.  C  y R
z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  D ) S w  /\  A. w  e.  B  ( w S ( F `  D )  ->  E. v  e.  ( F " C
) w S v ) ) ) )
503, 49sylan 277 1  |-  ( (
ph  /\  D  e.  A )  ->  (
( A. y  e.  C  -.  D R y  /\  A. y  e.  A  ( y R D  ->  E. z  e.  C  y R
z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  D ) S w  /\  A. w  e.  B  ( w S ( F `  D )  ->  E. v  e.  ( F " C
) w S v ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349    C_ wss 2973   class class class wbr 3785   "cima 4366    Fn wfn 4917   -onto->wfo 4920   -1-1-onto->wf1o 4921   ` cfv 4922    Isom wiso 4923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931
This theorem is referenced by:  supisoex  6422  supisoti  6423
  Copyright terms: Public domain W3C validator