| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supisoti | Unicode version | ||
| Description: Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| supiso.1 |
|
| supiso.2 |
|
| supisoex.3 |
|
| supisoti.ti |
|
| Ref | Expression |
|---|---|
| supisoti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supisoti.ti |
. . . . . . 7
| |
| 2 | 1 | ralrimivva 2443 |
. . . . . 6
|
| 3 | supiso.1 |
. . . . . . 7
| |
| 4 | isoti 6420 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | 2, 5 | mpbid 145 |
. . . . 5
|
| 7 | 6 | r19.21bi 2449 |
. . . 4
|
| 8 | 7 | r19.21bi 2449 |
. . 3
|
| 9 | 8 | anasss 391 |
. 2
|
| 10 | isof1o 5467 |
. . . 4
| |
| 11 | f1of 5146 |
. . . 4
| |
| 12 | 3, 10, 11 | 3syl 17 |
. . 3
|
| 13 | supisoex.3 |
. . . 4
| |
| 14 | 1, 13 | supclti 6411 |
. . 3
|
| 15 | 12, 14 | ffvelrnd 5324 |
. 2
|
| 16 | 1, 13 | supubti 6412 |
. . . . . 6
|
| 17 | 16 | ralrimiv 2433 |
. . . . 5
|
| 18 | 1, 13 | suplubti 6413 |
. . . . . . 7
|
| 19 | 18 | expd 254 |
. . . . . 6
|
| 20 | 19 | ralrimiv 2433 |
. . . . 5
|
| 21 | supiso.2 |
. . . . . . 7
| |
| 22 | 3, 21 | supisolem 6421 |
. . . . . 6
|
| 23 | 14, 22 | mpdan 412 |
. . . . 5
|
| 24 | 17, 20, 23 | mpbi2and 884 |
. . . 4
|
| 25 | 24 | simpld 110 |
. . 3
|
| 26 | 25 | r19.21bi 2449 |
. 2
|
| 27 | 24 | simprd 112 |
. . . 4
|
| 28 | 27 | r19.21bi 2449 |
. . 3
|
| 29 | 28 | impr 371 |
. 2
|
| 30 | 9, 15, 26, 29 | eqsuptid 6410 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-isom 4931 df-riota 5488 df-sup 6397 |
| This theorem is referenced by: infisoti 6445 infrenegsupex 8682 |
| Copyright terms: Public domain | W3C validator |