| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprleubex | Unicode version | ||
| Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| Ref | Expression |
|---|---|
| suprubex.ex |
|
| suprubex.ss |
|
| suprlubex.b |
|
| Ref | Expression |
|---|---|
| suprleubex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 7191 |
. . . . . . . 8
| |
| 2 | 1 | adantl 271 |
. . . . . . 7
|
| 3 | suprubex.ex |
. . . . . . 7
| |
| 4 | 2, 3 | supclti 6411 |
. . . . . 6
|
| 5 | suprlubex.b |
. . . . . 6
| |
| 6 | 4, 5 | lenltd 7227 |
. . . . 5
|
| 7 | suprubex.ss |
. . . . . 6
| |
| 8 | 3, 7, 5 | suprnubex 8031 |
. . . . 5
|
| 9 | 6, 8 | bitrd 186 |
. . . 4
|
| 10 | breq2 3789 |
. . . . . 6
| |
| 11 | 10 | notbid 624 |
. . . . 5
|
| 12 | 11 | cbvralv 2577 |
. . . 4
|
| 13 | 9, 12 | syl6bbr 196 |
. . 3
|
| 14 | 7 | sselda 2999 |
. . . . 5
|
| 15 | 5 | adantr 270 |
. . . . 5
|
| 16 | 14, 15 | lenltd 7227 |
. . . 4
|
| 17 | 16 | ralbidva 2364 |
. . 3
|
| 18 | 13, 17 | bitr4d 189 |
. 2
|
| 19 | breq1 3788 |
. . 3
| |
| 20 | 19 | cbvralv 2577 |
. 2
|
| 21 | 18, 20 | syl6bb 194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-po 4051 df-iso 4052 df-xp 4369 df-cnv 4371 df-iota 4887 df-riota 5488 df-sup 6397 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 |
| This theorem is referenced by: suprzclex 8445 |
| Copyright terms: Public domain | W3C validator |