| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprzclex | Unicode version | ||
| Description: The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.) |
| Ref | Expression |
|---|---|
| suprzclex.ex |
|
| suprzclex.ss |
|
| Ref | Expression |
|---|---|
| suprzclex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 7191 |
. . . . . 6
| |
| 2 | 1 | adantl 271 |
. . . . 5
|
| 3 | suprzclex.ex |
. . . . 5
| |
| 4 | 2, 3 | supclti 6411 |
. . . 4
|
| 5 | 4 | ltm1d 8010 |
. . 3
|
| 6 | suprzclex.ss |
. . . . 5
| |
| 7 | zssre 8358 |
. . . . 5
| |
| 8 | 6, 7 | syl6ss 3011 |
. . . 4
|
| 9 | peano2rem 7375 |
. . . . 5
| |
| 10 | 4, 9 | syl 14 |
. . . 4
|
| 11 | 3, 8, 10 | suprlubex 8030 |
. . 3
|
| 12 | 5, 11 | mpbid 145 |
. 2
|
| 13 | 6 | adantr 270 |
. . . . . . . . . 10
|
| 14 | 13 | sselda 2999 |
. . . . . . . . 9
|
| 15 | 7, 14 | sseldi 2997 |
. . . . . . . 8
|
| 16 | 4 | adantr 270 |
. . . . . . . . 9
|
| 17 | 16 | adantr 270 |
. . . . . . . 8
|
| 18 | simprl 497 |
. . . . . . . . . . . 12
| |
| 19 | 13, 18 | sseldd 3000 |
. . . . . . . . . . 11
|
| 20 | zre 8355 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | syl 14 |
. . . . . . . . . 10
|
| 22 | peano2re 7244 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | syl 14 |
. . . . . . . . 9
|
| 24 | 23 | adantr 270 |
. . . . . . . 8
|
| 25 | 3 | ad2antrr 471 |
. . . . . . . . 9
|
| 26 | 8 | ad2antrr 471 |
. . . . . . . . 9
|
| 27 | simpr 108 |
. . . . . . . . 9
| |
| 28 | 25, 26, 27 | suprubex 8029 |
. . . . . . . 8
|
| 29 | simprr 498 |
. . . . . . . . . 10
| |
| 30 | 1red 7134 |
. . . . . . . . . . 11
| |
| 31 | 16, 30, 21 | ltsubaddd 7641 |
. . . . . . . . . 10
|
| 32 | 29, 31 | mpbid 145 |
. . . . . . . . 9
|
| 33 | 32 | adantr 270 |
. . . . . . . 8
|
| 34 | 15, 17, 24, 28, 33 | lelttrd 7234 |
. . . . . . 7
|
| 35 | 19 | adantr 270 |
. . . . . . . 8
|
| 36 | zleltp1 8406 |
. . . . . . . 8
| |
| 37 | 14, 35, 36 | syl2anc 403 |
. . . . . . 7
|
| 38 | 34, 37 | mpbird 165 |
. . . . . 6
|
| 39 | 38 | ralrimiva 2434 |
. . . . 5
|
| 40 | breq2 3789 |
. . . . . . . . . . . . 13
| |
| 41 | 40 | cbvrexv 2578 |
. . . . . . . . . . . 12
|
| 42 | 41 | imbi2i 224 |
. . . . . . . . . . 11
|
| 43 | 42 | ralbii 2372 |
. . . . . . . . . 10
|
| 44 | 43 | anbi2i 444 |
. . . . . . . . 9
|
| 45 | 44 | rexbii 2373 |
. . . . . . . 8
|
| 46 | 3, 45 | sylib 120 |
. . . . . . 7
|
| 47 | 46 | adantr 270 |
. . . . . 6
|
| 48 | 13, 7 | syl6ss 3011 |
. . . . . 6
|
| 49 | 47, 48, 21 | suprleubex 8032 |
. . . . 5
|
| 50 | 39, 49 | mpbird 165 |
. . . 4
|
| 51 | 47, 48, 18 | suprubex 8029 |
. . . 4
|
| 52 | 16, 21 | letri3d 7226 |
. . . 4
|
| 53 | 50, 51, 52 | mpbir2and 885 |
. . 3
|
| 54 | 53, 18 | eqeltrd 2155 |
. 2
|
| 55 | 12, 54 | rexlimddv 2481 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-sup 6397 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 |
| This theorem is referenced by: infssuzcldc 10347 gcddvds 10355 |
| Copyright terms: Public domain | W3C validator |