| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfi | Unicode version | ||
| Description: The Principle of
Transfinite Induction. Theorem 7.17 of [TakeutiZaring]
p. 39. This principle states that if (Contributed by NM, 18-Feb-2004.) |
| Ref | Expression |
|---|---|
| tfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2353 |
. . . . . . 7
| |
| 2 | imdi 248 |
. . . . . . . 8
| |
| 3 | 2 | albii 1399 |
. . . . . . 7
|
| 4 | 1, 3 | bitri 182 |
. . . . . 6
|
| 5 | dfss2 2988 |
. . . . . . . . . 10
| |
| 6 | 5 | imbi2i 224 |
. . . . . . . . 9
|
| 7 | 19.21v 1794 |
. . . . . . . . 9
| |
| 8 | 6, 7 | bitr4i 185 |
. . . . . . . 8
|
| 9 | 8 | imbi1i 236 |
. . . . . . 7
|
| 10 | 9 | albii 1399 |
. . . . . 6
|
| 11 | 4, 10 | bitri 182 |
. . . . 5
|
| 12 | simpl 107 |
. . . . . . . . . . 11
| |
| 13 | tron 4137 |
. . . . . . . . . . . . . 14
| |
| 14 | dftr2 3877 |
. . . . . . . . . . . . . 14
| |
| 15 | 13, 14 | mpbi 143 |
. . . . . . . . . . . . 13
|
| 16 | 15 | spi 1469 |
. . . . . . . . . . . 12
|
| 17 | 16 | spi 1469 |
. . . . . . . . . . 11
|
| 18 | 12, 17 | jca 300 |
. . . . . . . . . 10
|
| 19 | 18 | imim1i 59 |
. . . . . . . . 9
|
| 20 | impexp 259 |
. . . . . . . . 9
| |
| 21 | impexp 259 |
. . . . . . . . . 10
| |
| 22 | bi2.04 246 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | bitri 182 |
. . . . . . . . 9
|
| 24 | 19, 20, 23 | 3imtr3i 198 |
. . . . . . . 8
|
| 25 | 24 | alimi 1384 |
. . . . . . 7
|
| 26 | 25 | imim1i 59 |
. . . . . 6
|
| 27 | 26 | alimi 1384 |
. . . . 5
|
| 28 | 11, 27 | sylbi 119 |
. . . 4
|
| 29 | 28 | adantl 271 |
. . 3
|
| 30 | sbim 1868 |
. . . . . . . . . 10
| |
| 31 | clelsb3 2183 |
. . . . . . . . . . 11
| |
| 32 | clelsb3 2183 |
. . . . . . . . . . 11
| |
| 33 | 31, 32 | imbi12i 237 |
. . . . . . . . . 10
|
| 34 | 30, 33 | bitri 182 |
. . . . . . . . 9
|
| 35 | 34 | ralbii 2372 |
. . . . . . . 8
|
| 36 | df-ral 2353 |
. . . . . . . 8
| |
| 37 | 35, 36 | bitri 182 |
. . . . . . 7
|
| 38 | 37 | imbi1i 236 |
. . . . . 6
|
| 39 | 38 | albii 1399 |
. . . . 5
|
| 40 | ax-setind 4280 |
. . . . 5
| |
| 41 | 39, 40 | sylbir 133 |
. . . 4
|
| 42 | dfss2 2988 |
. . . 4
| |
| 43 | 41, 42 | sylibr 132 |
. . 3
|
| 44 | 29, 43 | syl 14 |
. 2
|
| 45 | eqss 3014 |
. . 3
| |
| 46 | 45 | biimpri 131 |
. 2
|
| 47 | 44, 46 | syldan 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-in 2979 df-ss 2986 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 |
| This theorem is referenced by: tfis 4324 |
| Copyright terms: Public domain | W3C validator |