| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > th3qlem2 | Unicode version | ||
| Description: Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. The fourth hypothesis is the compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| th3q.1 |
|
| th3q.2 |
|
| th3q.4 |
|
| Ref | Expression |
|---|---|
| th3qlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | th3q.2 |
. . 3
| |
| 2 | eqid 2081 |
. . . . 5
| |
| 3 | breq1 3788 |
. . . . . . . 8
| |
| 4 | 3 | anbi1d 452 |
. . . . . . 7
|
| 5 | oveq1 5539 |
. . . . . . . 8
| |
| 6 | 5 | breq1d 3795 |
. . . . . . 7
|
| 7 | 4, 6 | imbi12d 232 |
. . . . . 6
|
| 8 | 7 | imbi2d 228 |
. . . . 5
|
| 9 | breq2 3789 |
. . . . . . . 8
| |
| 10 | 9 | anbi1d 452 |
. . . . . . 7
|
| 11 | oveq1 5539 |
. . . . . . . 8
| |
| 12 | 11 | breq2d 3797 |
. . . . . . 7
|
| 13 | 10, 12 | imbi12d 232 |
. . . . . 6
|
| 14 | 13 | imbi2d 228 |
. . . . 5
|
| 15 | breq1 3788 |
. . . . . . . . . 10
| |
| 16 | 15 | anbi2d 451 |
. . . . . . . . 9
|
| 17 | oveq2 5540 |
. . . . . . . . . 10
| |
| 18 | 17 | breq1d 3795 |
. . . . . . . . 9
|
| 19 | 16, 18 | imbi12d 232 |
. . . . . . . 8
|
| 20 | 19 | imbi2d 228 |
. . . . . . 7
|
| 21 | breq2 3789 |
. . . . . . . . . 10
| |
| 22 | 21 | anbi2d 451 |
. . . . . . . . 9
|
| 23 | oveq2 5540 |
. . . . . . . . . 10
| |
| 24 | 23 | breq2d 3797 |
. . . . . . . . 9
|
| 25 | 22, 24 | imbi12d 232 |
. . . . . . . 8
|
| 26 | 25 | imbi2d 228 |
. . . . . . 7
|
| 27 | th3q.4 |
. . . . . . . 8
| |
| 28 | 27 | expcom 114 |
. . . . . . 7
|
| 29 | 2, 20, 26, 28 | 2optocl 4435 |
. . . . . 6
|
| 30 | 29 | com12 30 |
. . . . 5
|
| 31 | 2, 8, 14, 30 | 2optocl 4435 |
. . . 4
|
| 32 | 31 | imp 122 |
. . 3
|
| 33 | 1, 32 | th3qlem1 6231 |
. 2
|
| 34 | vex 2604 |
. . . . . . 7
| |
| 35 | vex 2604 |
. . . . . . 7
| |
| 36 | 34, 35 | opex 3984 |
. . . . . 6
|
| 37 | vex 2604 |
. . . . . . 7
| |
| 38 | vex 2604 |
. . . . . . 7
| |
| 39 | 37, 38 | opex 3984 |
. . . . . 6
|
| 40 | eceq1 6164 |
. . . . . . . . 9
| |
| 41 | 40 | eqeq2d 2092 |
. . . . . . . 8
|
| 42 | eceq1 6164 |
. . . . . . . . 9
| |
| 43 | 42 | eqeq2d 2092 |
. . . . . . . 8
|
| 44 | 41, 43 | bi2anan9 570 |
. . . . . . 7
|
| 45 | oveq12 5541 |
. . . . . . . . 9
| |
| 46 | 45 | eceq1d 6165 |
. . . . . . . 8
|
| 47 | 46 | eqeq2d 2092 |
. . . . . . 7
|
| 48 | 44, 47 | anbi12d 456 |
. . . . . 6
|
| 49 | 36, 39, 48 | spc2ev 2693 |
. . . . 5
|
| 50 | 49 | exlimivv 1817 |
. . . 4
|
| 51 | 50 | exlimivv 1817 |
. . 3
|
| 52 | 51 | moimi 2006 |
. 2
|
| 53 | 33, 52 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fv 4930 df-ov 5535 df-er 6129 df-ec 6131 df-qs 6135 |
| This theorem is referenced by: th3qcor 6233 th3q 6234 |
| Copyright terms: Public domain | W3C validator |