| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unsnfidcex | Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| unsnfidcex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6264 |
. . . . 5
| |
| 2 | 1 | biimpi 118 |
. . . 4
|
| 3 | 2 | 3ad2ant1 959 |
. . 3
|
| 4 | isfi 6264 |
. . . . . . 7
| |
| 5 | 4 | biimpi 118 |
. . . . . 6
|
| 6 | 5 | 3ad2ant3 961 |
. . . . 5
|
| 7 | 6 | adantr 270 |
. . . 4
|
| 8 | simprr 498 |
. . . . . . . . . 10
| |
| 9 | 8 | ad3antrrr 475 |
. . . . . . . . 9
|
| 10 | simplr 496 |
. . . . . . . . 9
| |
| 11 | 9, 10 | breqtrrd 3811 |
. . . . . . . 8
|
| 12 | simprr 498 |
. . . . . . . . . 10
| |
| 13 | 12 | ad2antrr 471 |
. . . . . . . . 9
|
| 14 | 13 | ensymd 6286 |
. . . . . . . 8
|
| 15 | entr 6287 |
. . . . . . . 8
| |
| 16 | 11, 14, 15 | syl2anc 403 |
. . . . . . 7
|
| 17 | simp1 938 |
. . . . . . . . 9
| |
| 18 | 17 | ad4antr 477 |
. . . . . . . 8
|
| 19 | simpr 108 |
. . . . . . . . 9
| |
| 20 | simp2 939 |
. . . . . . . . . 10
| |
| 21 | 20 | ad4antr 477 |
. . . . . . . . 9
|
| 22 | 19, 21 | eldifd 2983 |
. . . . . . . 8
|
| 23 | php5fin 6366 |
. . . . . . . 8
| |
| 24 | 18, 22, 23 | syl2anc 403 |
. . . . . . 7
|
| 25 | 16, 24 | pm2.65da 619 |
. . . . . 6
|
| 26 | 25 | orcd 684 |
. . . . 5
|
| 27 | 8 | ad3antrrr 475 |
. . . . . . . . . . 11
|
| 28 | 27 | ensymd 6286 |
. . . . . . . . . 10
|
| 29 | snprc 3457 |
. . . . . . . . . . . . . . 15
| |
| 30 | 29 | biimpi 118 |
. . . . . . . . . . . . . 14
|
| 31 | 30 | uneq2d 3126 |
. . . . . . . . . . . . 13
|
| 32 | un0 3278 |
. . . . . . . . . . . . 13
| |
| 33 | 31, 32 | syl6eq 2129 |
. . . . . . . . . . . 12
|
| 34 | 33 | adantl 271 |
. . . . . . . . . . 11
|
| 35 | 12 | ad2antrr 471 |
. . . . . . . . . . 11
|
| 36 | 34, 35 | eqbrtrrd 3807 |
. . . . . . . . . 10
|
| 37 | entr 6287 |
. . . . . . . . . 10
| |
| 38 | 28, 36, 37 | syl2anc 403 |
. . . . . . . . 9
|
| 39 | simplrl 501 |
. . . . . . . . . . 11
| |
| 40 | 39 | ad2antrr 471 |
. . . . . . . . . 10
|
| 41 | simprl 497 |
. . . . . . . . . . 11
| |
| 42 | 41 | ad2antrr 471 |
. . . . . . . . . 10
|
| 43 | nneneq 6343 |
. . . . . . . . . 10
| |
| 44 | 40, 42, 43 | syl2anc 403 |
. . . . . . . . 9
|
| 45 | 38, 44 | mpbid 145 |
. . . . . . . 8
|
| 46 | 45 | eqcomd 2086 |
. . . . . . 7
|
| 47 | simplr 496 |
. . . . . . 7
| |
| 48 | 46, 47 | pm2.65da 619 |
. . . . . 6
|
| 49 | 48 | olcd 685 |
. . . . 5
|
| 50 | nndceq 6100 |
. . . . . . 7
| |
| 51 | 41, 39, 50 | syl2anc 403 |
. . . . . 6
|
| 52 | exmiddc 777 |
. . . . . 6
| |
| 53 | 51, 52 | syl 14 |
. . . . 5
|
| 54 | 26, 49, 53 | mpjaodan 744 |
. . . 4
|
| 55 | 7, 54 | rexlimddv 2481 |
. . 3
|
| 56 | 3, 55 | rexlimddv 2481 |
. 2
|
| 57 | df-dc 776 |
. 2
| |
| 58 | 56, 57 | sylibr 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-1o 6024 df-er 6129 df-en 6245 df-fin 6247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |