HomeHome Intuitionistic Logic Explorer
Theorem List (p. 87 of 108)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8601-8700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem9t5e45 8601 9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  5
 )  = ; 4 5
 
Theorem9t6e54 8602 9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  6
 )  = ; 5 4
 
Theorem9t7e63 8603 9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  7
 )  = ; 6 3
 
Theorem9t8e72 8604 9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  8
 )  = ; 7 2
 
Theorem9t9e81 8605 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  x.  9
 )  = ; 8 1
 
Theorem9t11e99 8606 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.)
 |-  ( 9  x. ; 1 1 )  = ; 9
 9
 
Theorem9lt10 8607 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
 |-  9  < ; 1 0
 
Theorem8lt10 8608 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
 |-  8  < ; 1 0
 
Theorem7lt10 8609 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  7  < ; 1 0
 
Theorem6lt10 8610 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  6  < ; 1 0
 
Theorem5lt10 8611 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  5  < ; 1 0
 
Theorem4lt10 8612 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  4  < ; 1 0
 
Theorem3lt10 8613 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  3  < ; 1 0
 
Theorem2lt10 8614 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  2  < ; 1 0
 
Theorem1lt10 8615 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
 |-  1  < ; 1 0
 
Theoremdecbin0 8616 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   =>    |-  ( 4  x.  A )  =  ( 2  x.  ( 2  x.  A ) )
 
Theoremdecbin2 8617 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   =>    |-  ( ( 4  x.  A )  +  2 )  =  ( 2  x.  ( ( 2  x.  A )  +  1 ) )
 
Theoremdecbin3 8618 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   =>    |-  ( ( 4  x.  A )  +  3 )  =  ( ( 2  x.  ( ( 2  x.  A )  +  1 ) )  +  1 )
 
3.4.10  Upper sets of integers
 
Syntaxcuz 8619 Extend class notation with the upper integer function. Read " ZZ>= `  M " as "the set of integers greater than or equal to  M."
 class  ZZ>=
 
Definitiondf-uz 8620* Define a function whose value at  j is the semi-infinite set of contiguous integers starting at  j, which we will also call the upper integers starting at  j. Read " ZZ>= `  M " as "the set of integers greater than or equal to  M." See uzval 8621 for its value, uzssz 8638 for its relationship to  ZZ, nnuz 8654 and nn0uz 8653 for its relationships to  NN and  NN0, and eluz1 8623 and eluz2 8625 for its membership relations. (Contributed by NM, 5-Sep-2005.)
 |- 
 ZZ>=  =  ( j  e. 
 ZZ  |->  { k  e.  ZZ  |  j  <_  k }
 )
 
Theoremuzval 8621* The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( N  e.  ZZ  ->  ( ZZ>= `  N )  =  { k  e.  ZZ  |  N  <_  k }
 )
 
Theoremuzf 8622 The domain and range of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |- 
 ZZ>= : ZZ --> ~P ZZ
 
Theoremeluz1 8623 Membership in the upper set of integers starting at  M. (Contributed by NM, 5-Sep-2005.)
 |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>=
 `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
 
Theoremeluzel2 8624 Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  M  e.  ZZ )
 
Theoremeluz2 8625 Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show  M  e.  ZZ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( N  e.  ( ZZ>=
 `  M )  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )
 )
 
Theoremeluz1i 8626 Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.)
 |-  M  e.  ZZ   =>    |-  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) )
 
Theoremeluzuzle 8627 An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.)
 |-  ( ( B  e.  ZZ  /\  B  <_  A )  ->  ( C  e.  ( ZZ>= `  A )  ->  C  e.  ( ZZ>= `  B ) ) )
 
Theoremeluzelz 8628 A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  ZZ )
 
Theoremeluzelre 8629 A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  RR )
 
Theoremeluzelcn 8630 A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  CC )
 
Theoremeluzle 8631 Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  M  <_  N )
 
Theoremeluz 8632 Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  ( ZZ>= `  M )  <->  M 
 <_  N ) )
 
Theoremuzid 8633 Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.)
 |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M ) )
 
Theoremuzn0 8634 The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.)
 |-  ( M  e.  ran  ZZ>=  ->  M  =/=  (/) )
 
Theoremuztrn 8635 Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
 |-  ( ( M  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  N ) )  ->  M  e.  ( ZZ>= `  N ) )
 
Theoremuztrn2 8636 Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  K )   =>    |-  ( ( N  e.  Z  /\  M  e.  ( ZZ>=
 `  N ) ) 
 ->  M  e.  Z )
 
Theoremuzneg 8637 Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  -u M  e.  ( ZZ>= `  -u N ) )
 
Theoremuzssz 8638 An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ZZ>= `  M )  C_ 
 ZZ
 
Theoremuzss 8639 Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( ZZ>= `  N )  C_  ( ZZ>= `  M )
 )
 
Theoremuztric 8640 Trichotomy of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jun-2013.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  ( ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
 
Theoremuz11 8641 The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.)
 |-  ( M  e.  ZZ  ->  ( ( ZZ>= `  M )  =  ( ZZ>= `  N )  <->  M  =  N ) )
 
Theoremeluzp1m1 8642 Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>=
 `  ( M  +  1 ) ) ) 
 ->  ( N  -  1
 )  e.  ( ZZ>= `  M ) )
 
Theoremeluzp1l 8643 Strict ordering implied by membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>=
 `  ( M  +  1 ) ) ) 
 ->  M  <  N )
 
Theoremeluzp1p1 8644 Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  +  1
 )  e.  ( ZZ>= `  ( M  +  1
 ) ) )
 
Theoremeluzaddi 8645 Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.)
 |-  M  e.  ZZ   &    |-  K  e.  ZZ   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  +  K )  e.  ( ZZ>= `  ( M  +  K ) ) )
 
Theoremeluzsubi 8646 Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.)
 |-  M  e.  ZZ   &    |-  K  e.  ZZ   =>    |-  ( N  e.  ( ZZ>=
 `  ( M  +  K ) )  ->  ( N  -  K )  e.  ( ZZ>= `  M ) )
 
Theoremeluzadd 8647 Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ( ZZ>= `  ( M  +  K ) ) )
 
Theoremeluzsub 8648 Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( N  -  K )  e.  ( ZZ>= `  M ) )
 
Theoremuzm1 8649 Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  =  M  \/  ( N  -  1
 )  e.  ( ZZ>= `  M ) ) )
 
Theoremuznn0sub 8650 The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  -  M )  e.  NN0 )
 
Theoremuzin 8651 Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ZZ>= `  M )  i^i  ( ZZ>= `  N ) )  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )
 
Theoremuzp1 8652 Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1
 ) ) ) )
 
Theoremnn0uz 8653 Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.)
 |- 
 NN0  =  ( ZZ>= `  0 )
 
Theoremnnuz 8654 Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.)
 |- 
 NN  =  ( ZZ>= `  1 )
 
Theoremelnnuz 8655 A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.)
 |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
 )
 
Theoremelnn0uz 8656 A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.)
 |-  ( N  e.  NN0  <->  N  e.  ( ZZ>= `  0 )
 )
 
Theoremeluz2nn 8657 An integer is greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.)
 |-  ( A  e.  ( ZZ>=
 `  2 )  ->  A  e.  NN )
 
Theoremeluzge2nn0 8658 If an integer is greater than or equal to 2, then it is a nonnegative integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV, 3-Nov-2018.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  N  e.  NN0 )
 
Theoremuzuzle23 8659 An integer in the upper set of integers starting at 3 is element of the upper set of integers starting at 2. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( A  e.  ( ZZ>=
 `  3 )  ->  A  e.  ( ZZ>= `  2 ) )
 
Theoremeluzge3nn 8660 If an integer is greater than 3, then it is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( N  e.  ( ZZ>=
 `  3 )  ->  N  e.  NN )
 
Theoremuz3m2nn 8661 An integer greater than or equal to 3 decreased by 2 is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( N  e.  ( ZZ>=
 `  3 )  ->  ( N  -  2
 )  e.  NN )
 
Theorem1eluzge0 8662 1 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.)
 |-  1  e.  ( ZZ>= `  0 )
 
Theorem2eluzge0 8663 2 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
 |-  2  e.  ( ZZ>= `  0 )
 
Theorem2eluzge1 8664 2 is an integer greater than or equal to 1. (Contributed by Alexander van der Vekens, 8-Jun-2018.)
 |-  2  e.  ( ZZ>= `  1 )
 
Theoremuznnssnn 8665 The upper integers starting from a natural are a subset of the naturals. (Contributed by Scott Fenton, 29-Jun-2013.)
 |-  ( N  e.  NN  ->  ( ZZ>= `  N )  C_ 
 NN )
 
Theoremraluz 8666* Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( M  e.  ZZ  ->  ( A. n  e.  ( ZZ>= `  M ) ph 
 <-> 
 A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
 
Theoremraluz2 8667* Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( A. n  e.  ( ZZ>= `  M ) ph 
 <->  ( M  e.  ZZ  ->  A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
 
Theoremrexuz 8668* Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( M  e.  ZZ  ->  ( E. n  e.  ( ZZ>= `  M ) ph 
 <-> 
 E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
 
Theoremrexuz2 8669* Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
 |-  ( E. n  e.  ( ZZ>= `  M ) ph 
 <->  ( M  e.  ZZ  /\ 
 E. n  e.  ZZ  ( M  <_  n  /\  ph ) ) )
 
Theorem2rexuz 8670* Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.)
 |-  ( E. m E. n  e.  ( ZZ>= `  m ) ph  <->  E. m  e.  ZZ  E. n  e.  ZZ  ( m  <_  n  /\  ph )
 )
 
Theorempeano2uz 8671 Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( N  +  1
 )  e.  ( ZZ>= `  M ) )
 
Theorempeano2uzs 8672 Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  ( N  +  1 )  e.  Z )
 
Theorempeano2uzr 8673 Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>=
 `  ( M  +  1 ) ) ) 
 ->  N  e.  ( ZZ>= `  M ) )
 
Theoremuzaddcl 8674 Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.)
 |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  NN0 )  ->  ( N  +  K )  e.  ( ZZ>= `  M ) )
 
Theoremnn0pzuz 8675 The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
 |-  ( ( N  e.  NN0  /\  Z  e.  ZZ )  ->  ( N  +  Z )  e.  ( ZZ>= `  Z ) )
 
Theoremuzind4 8676* Induction on the upper set of integers that starts at an integer  M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( ch  ->  th )
 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ta )
 
Theoremuzind4ALT 8677* Induction on the upper set of integers that starts at an integer  M. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 8676 or uzind4ALT 8677 may be used; see comment for nnind 8055. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( M  e.  ZZ  ->  ps )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( ch  ->  th )
 )   &    |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   =>    |-  ( N  e.  ( ZZ>= `  M )  ->  ta )
 
Theoremuzind4s 8678* Induction on the upper set of integers that starts at an integer  M, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
 |-  ( M  e.  ZZ  -> 
 [. M  /  k ]. ph )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( ph  ->  [. (
 k  +  1 ) 
 /  k ]. ph )
 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  [. N  /  k ]. ph )
 
Theoremuzind4s2 8679* Induction on the upper set of integers that starts at an integer  M, using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s 8678 when  j and  k must be distinct in  [. ( k  +  1 )  /  j ]. ph. (Contributed by NM, 16-Nov-2005.)
 |-  ( M  e.  ZZ  -> 
 [. M  /  j ]. ph )   &    |-  ( k  e.  ( ZZ>= `  M )  ->  ( [. k  /  j ]. ph  ->  [. (
 k  +  1 ) 
 /  j ]. ph )
 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  [. N  /  j ]. ph )
 
Theoremuzind4i 8680* Induction on the upper integers that start at  M. The first hypothesis specifies the lower bound, the next four give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 4-Sep-2005.)
 |-  M  e.  ZZ   &    |-  (
 j  =  M  ->  (
 ph 
 <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 k  e.  ( ZZ>= `  M )  ->  ( ch 
 ->  th ) )   =>    |-  ( N  e.  ( ZZ>= `  M )  ->  ta )
 
Theoremindstr 8681* Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  e.  NN  ->  (
 A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
 )   =>    |-  ( x  e.  NN  -> 
 ph )
 
Theoreminfrenegsupex 8682* The infimum of a set of reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  -> inf ( A ,  RR ,  <  )  =  -u sup ( {
 z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
 )
 
Theoremsupinfneg 8683* If a set of real numbers has a least upper bound, the set of the negation of those numbers has a greatest lower bound. For a theorem which is similar but only for the boundedness part, see ublbneg 8698. (Contributed by Jim Kingdon, 15-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
 y ) ) )
 
Theoreminfsupneg 8684* If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 8683. (Contributed by Jim Kingdon, 15-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  A  z  <  y
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
 z ) ) )
 
Theoremsupminfex 8685* A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   =>    |-  ( ph  ->  sup ( A ,  RR ,  <  )  =  -uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) )
 
Theoremeluznn0 8686 Membership in a nonnegative upper set of integers implies membership in  NN0. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN0 )
 
Theoremeluznn 8687 Membership in a positive upper set of integers implies membership in  NN. (Contributed by JJ, 1-Oct-2018.)
 |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>=
 `  N ) ) 
 ->  M  e.  NN )
 
Theoremeluz2b1 8688 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  <->  ( N  e.  ZZ  /\  1  <  N ) )
 
Theoremeluz2gt1 8689 An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  -> 
 1  <  N )
 
Theoremeluz2b2 8690 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  <->  ( N  e.  NN  /\  1  <  N ) )
 
Theoremeluz2b3 8691 Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  <->  ( N  e.  NN  /\  N  =/=  1
 ) )
 
Theoremuz2m1nn 8692 One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  ( N  -  1
 )  e.  NN )
 
Theorem1nuz2 8693 1 is not in  ( ZZ>= `  2
). (Contributed by Paul Chapman, 21-Nov-2012.)
 |- 
 -.  1  e.  ( ZZ>=
 `  2 )
 
Theoremelnn1uz2 8694 A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 ) ) )
 
Theoremuz2mulcl 8695 Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.)
 |-  ( ( M  e.  ( ZZ>= `  2 )  /\  N  e.  ( ZZ>= `  2 ) )  ->  ( M  x.  N )  e.  ( ZZ>= `  2 ) )
 
Theoremindstr2 8696* Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
 |-  ( x  =  1 
 ->  ( ph  <->  ch ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ch   &    |-  ( x  e.  ( ZZ>= `  2 )  ->  ( A. y  e.  NN  (
 y  <  x  ->  ps )  ->  ph ) )   =>    |-  ( x  e.  NN  -> 
 ph )
 
Theoremeluzdc 8697 Membership of an integer in an upper set of integers is decidable. (Contributed by Jim Kingdon, 18-Apr-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  e.  ( ZZ>= `  M ) )
 
Theoremublbneg 8698* The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 8683. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( E. x  e. 
 RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
 { z  e.  RR  |  -u z  e.  A } x  <_  y )
 
Theoremeqreznegel 8699* Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( A  C_  ZZ  ->  { z  e.  RR  |  -u z  e.  A }  =  { z  e.  ZZ  |  -u z  e.  A } )
 
Theoremnegm 8700* The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)
 |-  ( ( A  C_  RR  /\  E. x  x  e.  A )  ->  E. y  y  e.  { z  e.  RR  |  -u z  e.  A }
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >