ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4s Unicode version

Theorem uzind4s 8678
Description: Induction on the upper set of integers that starts at an integer  M, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
Hypotheses
Ref Expression
uzind4s.1  |-  ( M  e.  ZZ  ->  [. M  /  k ]. ph )
uzind4s.2  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  [. ( k  +  1 )  /  k ]. ph ) )
Assertion
Ref Expression
uzind4s  |-  ( N  e.  ( ZZ>= `  M
)  ->  [. N  / 
k ]. ph )
Distinct variable group:    k, M
Allowed substitution hints:    ph( k)    N( k)

Proof of Theorem uzind4s
Dummy variables  m  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2818 . 2  |-  ( j  =  M  ->  ( [ j  /  k ] ph  <->  [. M  /  k ]. ph ) )
2 sbequ 1761 . 2  |-  ( j  =  m  ->  ( [ j  /  k ] ph  <->  [ m  /  k ] ph ) )
3 dfsbcq2 2818 . 2  |-  ( j  =  ( m  + 
1 )  ->  ( [ j  /  k ] ph  <->  [. ( m  + 
1 )  /  k ]. ph ) )
4 dfsbcq2 2818 . 2  |-  ( j  =  N  ->  ( [ j  /  k ] ph  <->  [. N  /  k ]. ph ) )
5 uzind4s.1 . 2  |-  ( M  e.  ZZ  ->  [. M  /  k ]. ph )
6 nfv 1461 . . . 4  |-  F/ k  m  e.  ( ZZ>= `  M )
7 nfs1v 1856 . . . . 5  |-  F/ k [ m  /  k ] ph
8 nfsbc1v 2833 . . . . 5  |-  F/ k
[. ( m  + 
1 )  /  k ]. ph
97, 8nfim 1504 . . . 4  |-  F/ k ( [ m  / 
k ] ph  ->  [. ( m  +  1 )  /  k ]. ph )
106, 9nfim 1504 . . 3  |-  F/ k ( m  e.  (
ZZ>= `  M )  -> 
( [ m  / 
k ] ph  ->  [. ( m  +  1 )  /  k ]. ph ) )
11 eleq1 2141 . . . 4  |-  ( k  =  m  ->  (
k  e.  ( ZZ>= `  M )  <->  m  e.  ( ZZ>= `  M )
) )
12 sbequ12 1694 . . . . 5  |-  ( k  =  m  ->  ( ph 
<->  [ m  /  k ] ph ) )
13 oveq1 5539 . . . . . 6  |-  ( k  =  m  ->  (
k  +  1 )  =  ( m  + 
1 ) )
1413sbceq1d 2820 . . . . 5  |-  ( k  =  m  ->  ( [. ( k  +  1 )  /  k ]. ph  <->  [. ( m  +  1 )  /  k ]. ph ) )
1512, 14imbi12d 232 . . . 4  |-  ( k  =  m  ->  (
( ph  ->  [. (
k  +  1 )  /  k ]. ph )  <->  ( [ m  /  k ] ph  ->  [. ( m  +  1 )  / 
k ]. ph ) ) )
1611, 15imbi12d 232 . . 3  |-  ( k  =  m  ->  (
( k  e.  (
ZZ>= `  M )  -> 
( ph  ->  [. (
k  +  1 )  /  k ]. ph )
)  <->  ( m  e.  ( ZZ>= `  M )  ->  ( [ m  / 
k ] ph  ->  [. ( m  +  1 )  /  k ]. ph ) ) ) )
17 uzind4s.2 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  [. ( k  +  1 )  /  k ]. ph ) )
1810, 16, 17chvar 1680 . 2  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( [
m  /  k ]
ph  ->  [. ( m  + 
1 )  /  k ]. ph ) )
191, 2, 3, 4, 5, 18uzind4 8676 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  [. N  / 
k ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1433   [wsb 1685   [.wsbc 2815   ` cfv 4922  (class class class)co 5532   1c1 6982    + caddc 6984   ZZcz 8351   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator