ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4ALT Unicode version

Theorem uzind4ALT 8677
Description: Induction on the upper set of integers that starts at an integer  M. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 8676 or uzind4ALT 8677 may be used; see comment for nnind 8055. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
uzind4ALT.5  |-  ( M  e.  ZZ  ->  ps )
uzind4ALT.6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
uzind4ALT.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind4ALT.2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
uzind4ALT.3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
uzind4ALT.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
Assertion
Ref Expression
uzind4ALT  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Distinct variable groups:    j, N    ps, j    ch, j    th, j    ta, j    ph, k    j, k, M
Allowed substitution hints:    ph( j)    ps( k)    ch( k)    th( k)    ta( k)    N( k)

Proof of Theorem uzind4ALT
StepHypRef Expression
1 uzind4ALT.1 . 2  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
2 uzind4ALT.2 . 2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
3 uzind4ALT.3 . 2  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
4 uzind4ALT.4 . 2  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
5 uzind4ALT.5 . 2  |-  ( M  e.  ZZ  ->  ps )
6 uzind4ALT.6 . 2  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
71, 2, 3, 4, 5, 6uzind4 8676 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1284    e. wcel 1433   ` cfv 4922  (class class class)co 5532   1c1 6982    + caddc 6984   ZZcz 8351   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator