ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zneo Unicode version

Theorem zneo 8448
Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
Assertion
Ref Expression
zneo  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  =/=  ( ( 2  x.  B )  +  1 ) )

Proof of Theorem zneo
StepHypRef Expression
1 halfnz 8443 . . 3  |-  -.  (
1  /  2 )  e.  ZZ
2 2cn 8110 . . . . . . 7  |-  2  e.  CC
3 zcn 8356 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  CC )
43adantr 270 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  CC )
5 mulcl 7100 . . . . . . 7  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
62, 4, 5sylancr 405 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  e.  CC )
7 zcn 8356 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
87adantl 271 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  CC )
9 mulcl 7100 . . . . . . 7  |-  ( ( 2  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  e.  CC )
102, 8, 9sylancr 405 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  B
)  e.  CC )
11 1cnd 7135 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  1  e.  CC )
126, 10, 11subaddd 7437 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  =  1  <-> 
( ( 2  x.  B )  +  1 )  =  ( 2  x.  A ) ) )
132a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  2  e.  CC )
1413, 4, 8subdid 7518 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  ( A  -  B )
)  =  ( ( 2  x.  A )  -  ( 2  x.  B ) ) )
1514oveq1d 5547 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  x.  ( A  -  B
) )  /  2
)  =  ( ( ( 2  x.  A
)  -  ( 2  x.  B ) )  /  2 ) )
16 zsubcl 8392 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
17 zcn 8356 . . . . . . . . . 10  |-  ( ( A  -  B )  e.  ZZ  ->  ( A  -  B )  e.  CC )
1816, 17syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  CC )
19 2ap0 8132 . . . . . . . . . 10  |-  2 #  0
2019a1i 9 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  2 #  0 )
2118, 13, 20divcanap3d 7882 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  x.  ( A  -  B
) )  /  2
)  =  ( A  -  B ) )
2215, 21eqtr3d 2115 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  /  2
)  =  ( A  -  B ) )
2322, 16eqeltrd 2155 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  /  2
)  e.  ZZ )
24 oveq1 5539 . . . . . . 7  |-  ( ( ( 2  x.  A
)  -  ( 2  x.  B ) )  =  1  ->  (
( ( 2  x.  A )  -  (
2  x.  B ) )  /  2 )  =  ( 1  / 
2 ) )
2524eleq1d 2147 . . . . . 6  |-  ( ( ( 2  x.  A
)  -  ( 2  x.  B ) )  =  1  ->  (
( ( ( 2  x.  A )  -  ( 2  x.  B
) )  /  2
)  e.  ZZ  <->  ( 1  /  2 )  e.  ZZ ) )
2623, 25syl5ibcom 153 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  =  1  ->  ( 1  / 
2 )  e.  ZZ ) )
2712, 26sylbird 168 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  B )  +  1 )  =  ( 2  x.  A )  ->  ( 1  / 
2 )  e.  ZZ ) )
2827necon3bd 2288 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  ( 1  /  2 )  e.  ZZ  ->  ( (
2  x.  B )  +  1 )  =/=  ( 2  x.  A
) ) )
291, 28mpi 15 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  x.  B )  +  1 )  =/=  ( 2  x.  A ) )
3029necomd 2331 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  =/=  ( ( 2  x.  B )  +  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433    =/= wne 2245   class class class wbr 3785  (class class class)co 5532   CCcc 6979   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986    - cmin 7279   # cap 7681    / cdiv 7760   2c2 8089   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352
This theorem is referenced by:  nneo  8450  zeo2  8453
  Copyright terms: Public domain W3C validator