![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordtriexmidlem2 | GIF version |
Description: Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4265 or weak linearity in ordsoexmid 4305) with a proposition 𝜑. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.) |
Ref | Expression |
---|---|
ordtriexmidlem2 | ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3255 | . . 3 ⊢ ¬ ∅ ∈ ∅ | |
2 | eleq2 2142 | . . 3 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ ∅ ∈ ∅)) | |
3 | 1, 2 | mtbiri 632 | . 2 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ ∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑}) |
4 | 0ex 3905 | . . . 4 ⊢ ∅ ∈ V | |
5 | 4 | snid 3425 | . . 3 ⊢ ∅ ∈ {∅} |
6 | biidd 170 | . . . 4 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜑)) | |
7 | 6 | elrab3 2750 | . . 3 ⊢ (∅ ∈ {∅} → (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ 𝜑)) |
8 | 5, 7 | ax-mp 7 | . 2 ⊢ (∅ ∈ {𝑥 ∈ {∅} ∣ 𝜑} ↔ 𝜑) |
9 | 3, 8 | sylnib 633 | 1 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 = wceq 1284 ∈ wcel 1433 {crab 2352 ∅c0 3251 {csn 3398 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-nul 3904 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 df-v 2603 df-dif 2975 df-nul 3252 df-sn 3404 |
This theorem is referenced by: ordtriexmid 4265 ordtri2orexmid 4266 ontr2exmid 4268 onsucsssucexmid 4270 ordsoexmid 4305 0elsucexmid 4308 ordpwsucexmid 4313 |
Copyright terms: Public domain | W3C validator |