![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordtriexmidlem | GIF version |
Description: Lemma for decidability and ordinals. The set {𝑥 ∈ {∅} ∣ 𝜑} is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4265 or weak linearity in ordsoexmid 4305) with a proposition 𝜑. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.) |
Ref | Expression |
---|---|
ordtriexmidlem | ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 107 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ 𝑧) | |
2 | elrabi 2746 | . . . . . . . . 9 ⊢ (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 ∈ {∅}) | |
3 | velsn 3415 | . . . . . . . . 9 ⊢ (𝑧 ∈ {∅} ↔ 𝑧 = ∅) | |
4 | 2, 3 | sylib 120 | . . . . . . . 8 ⊢ (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → 𝑧 = ∅) |
5 | noel 3255 | . . . . . . . . 9 ⊢ ¬ 𝑦 ∈ ∅ | |
6 | eleq2 2142 | . . . . . . . . 9 ⊢ (𝑧 = ∅ → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ ∅)) | |
7 | 5, 6 | mtbiri 632 | . . . . . . . 8 ⊢ (𝑧 = ∅ → ¬ 𝑦 ∈ 𝑧) |
8 | 4, 7 | syl 14 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑} → ¬ 𝑦 ∈ 𝑧) |
9 | 8 | adantl 271 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → ¬ 𝑦 ∈ 𝑧) |
10 | 1, 9 | pm2.21dd 582 | . . . . 5 ⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) |
11 | 10 | gen2 1379 | . . . 4 ⊢ ∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) |
12 | dftr2 3877 | . . . 4 ⊢ (Tr {𝑥 ∈ {∅} ∣ 𝜑} ↔ ∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅} ∣ 𝜑})) | |
13 | 11, 12 | mpbir 144 | . . 3 ⊢ Tr {𝑥 ∈ {∅} ∣ 𝜑} |
14 | ssrab2 3079 | . . 3 ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅} | |
15 | ord0 4146 | . . . . 5 ⊢ Ord ∅ | |
16 | ordsucim 4244 | . . . . 5 ⊢ (Ord ∅ → Ord suc ∅) | |
17 | 15, 16 | ax-mp 7 | . . . 4 ⊢ Ord suc ∅ |
18 | suc0 4166 | . . . . 5 ⊢ suc ∅ = {∅} | |
19 | ordeq 4127 | . . . . 5 ⊢ (suc ∅ = {∅} → (Ord suc ∅ ↔ Ord {∅})) | |
20 | 18, 19 | ax-mp 7 | . . . 4 ⊢ (Ord suc ∅ ↔ Ord {∅}) |
21 | 17, 20 | mpbi 143 | . . 3 ⊢ Ord {∅} |
22 | trssord 4135 | . . 3 ⊢ ((Tr {𝑥 ∈ {∅} ∣ 𝜑} ∧ {𝑥 ∈ {∅} ∣ 𝜑} ⊆ {∅} ∧ Ord {∅}) → Ord {𝑥 ∈ {∅} ∣ 𝜑}) | |
23 | 13, 14, 21, 22 | mp3an 1268 | . 2 ⊢ Ord {𝑥 ∈ {∅} ∣ 𝜑} |
24 | p0ex 3959 | . . . 4 ⊢ {∅} ∈ V | |
25 | 24 | rabex 3922 | . . 3 ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ V |
26 | 25 | elon 4129 | . 2 ⊢ ({𝑥 ∈ {∅} ∣ 𝜑} ∈ On ↔ Ord {𝑥 ∈ {∅} ∣ 𝜑}) |
27 | 23, 26 | mpbir 144 | 1 ⊢ {𝑥 ∈ {∅} ∣ 𝜑} ∈ On |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 = wceq 1284 ∈ wcel 1433 {crab 2352 ⊆ wss 2973 ∅c0 3251 {csn 3398 Tr wtr 3875 Ord word 4117 Oncon0 4118 suc csuc 4120 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 |
This theorem is referenced by: ordtriexmid 4265 ordtri2orexmid 4266 ontr2exmid 4268 onsucsssucexmid 4270 ordsoexmid 4305 0elsucexmid 4308 ordpwsucexmid 4313 |
Copyright terms: Public domain | W3C validator |