ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun6f GIF version

Theorem dffun6f 4935
Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dffun6f.1 𝑥𝐴
dffun6f.2 𝑦𝐴
Assertion
Ref Expression
dffun6f (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dffun6f
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun2 4932 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑤𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢)))
2 nfcv 2219 . . . . . . 7 𝑦𝑤
3 dffun6f.2 . . . . . . 7 𝑦𝐴
4 nfcv 2219 . . . . . . 7 𝑦𝑣
52, 3, 4nfbr 3829 . . . . . 6 𝑦 𝑤𝐴𝑣
6 nfv 1461 . . . . . 6 𝑣 𝑤𝐴𝑦
7 breq2 3789 . . . . . 6 (𝑣 = 𝑦 → (𝑤𝐴𝑣𝑤𝐴𝑦))
85, 6, 7cbvmo 1981 . . . . 5 (∃*𝑣 𝑤𝐴𝑣 ↔ ∃*𝑦 𝑤𝐴𝑦)
98albii 1399 . . . 4 (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∃*𝑦 𝑤𝐴𝑦)
10 breq2 3789 . . . . . 6 (𝑣 = 𝑢 → (𝑤𝐴𝑣𝑤𝐴𝑢))
1110mo4 2002 . . . . 5 (∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢))
1211albii 1399 . . . 4 (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢))
13 nfcv 2219 . . . . . . 7 𝑥𝑤
14 dffun6f.1 . . . . . . 7 𝑥𝐴
15 nfcv 2219 . . . . . . 7 𝑥𝑦
1613, 14, 15nfbr 3829 . . . . . 6 𝑥 𝑤𝐴𝑦
1716nfmo 1961 . . . . 5 𝑥∃*𝑦 𝑤𝐴𝑦
18 nfv 1461 . . . . 5 𝑤∃*𝑦 𝑥𝐴𝑦
19 breq1 3788 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑦𝑥𝐴𝑦))
2019mobidv 1977 . . . . 5 (𝑤 = 𝑥 → (∃*𝑦 𝑤𝐴𝑦 ↔ ∃*𝑦 𝑥𝐴𝑦))
2117, 18, 20cbval 1677 . . . 4 (∀𝑤∃*𝑦 𝑤𝐴𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
229, 12, 213bitr3ri 209 . . 3 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑤𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢))
2322anbi2i 444 . 2 ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑤𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢)))
241, 23bitr4i 185 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282  ∃*wmo 1942  wnfc 2206   class class class wbr 3785  Rel wrel 4368  Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-cnv 4371  df-co 4372  df-fun 4924
This theorem is referenced by:  dffun6  4936  dffun4f  4938  funopab  4955
  Copyright terms: Public domain W3C validator