![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmi | GIF version |
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmi | ⊢ dom I = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3267 | . 2 ⊢ (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I ) | |
2 | a9ev 1627 | . . . 4 ⊢ ∃𝑦 𝑦 = 𝑥 | |
3 | vex 2604 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | ideq 4506 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
5 | equcom 1633 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
6 | 4, 5 | bitri 182 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑦 = 𝑥) |
7 | 6 | exbii 1536 | . . . 4 ⊢ (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥) |
8 | 2, 7 | mpbir 144 | . . 3 ⊢ ∃𝑦 𝑥 I 𝑦 |
9 | vex 2604 | . . . 4 ⊢ 𝑥 ∈ V | |
10 | 9 | eldm 4550 | . . 3 ⊢ (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦) |
11 | 8, 10 | mpbir 144 | . 2 ⊢ 𝑥 ∈ dom I |
12 | 1, 11 | mpgbir 1382 | 1 ⊢ dom I = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∃wex 1421 ∈ wcel 1433 Vcvv 2601 class class class wbr 3785 I cid 4043 dom cdm 4363 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-dm 4373 |
This theorem is referenced by: dmv 4569 iprc 4618 dmresi 4681 climshft2 10145 |
Copyright terms: Public domain | W3C validator |