ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmi GIF version

Theorem dmi 4568
Description: The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmi dom I = V

Proof of Theorem dmi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqv 3267 . 2 (dom I = V ↔ ∀𝑥 𝑥 ∈ dom I )
2 a9ev 1627 . . . 4 𝑦 𝑦 = 𝑥
3 vex 2604 . . . . . . 7 𝑦 ∈ V
43ideq 4506 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
5 equcom 1633 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5bitri 182 . . . . 5 (𝑥 I 𝑦𝑦 = 𝑥)
76exbii 1536 . . . 4 (∃𝑦 𝑥 I 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
82, 7mpbir 144 . . 3 𝑦 𝑥 I 𝑦
9 vex 2604 . . . 4 𝑥 ∈ V
109eldm 4550 . . 3 (𝑥 ∈ dom I ↔ ∃𝑦 𝑥 I 𝑦)
118, 10mpbir 144 . 2 𝑥 ∈ dom I
121, 11mpgbir 1382 1 dom I = V
Colors of variables: wff set class
Syntax hints:   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601   class class class wbr 3785   I cid 4043  dom cdm 4363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-dm 4373
This theorem is referenced by:  dmv  4569  iprc  4618  dmresi  4681  climshft2  10145
  Copyright terms: Public domain W3C validator