ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshft2 GIF version

Theorem climshft2 10145
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
Hypotheses
Ref Expression
climshft2.1 𝑍 = (ℤ𝑀)
climshft2.2 (𝜑𝑀 ∈ ℤ)
climshft2.3 (𝜑𝐾 ∈ ℤ)
climshft2.5 (𝜑𝐹𝑊)
climshft2.6 (𝜑𝐺𝑋)
climshft2.7 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
Assertion
Ref Expression
climshft2 (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘
Allowed substitution hints:   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem climshft2
StepHypRef Expression
1 climshft2.1 . . 3 𝑍 = (ℤ𝑀)
2 climshft2.6 . . . 4 (𝜑𝐺𝑋)
3 climshft2.3 . . . . . 6 (𝜑𝐾 ∈ ℤ)
43zcnd 8470 . . . . 5 (𝜑𝐾 ∈ ℂ)
54negcld 7406 . . . 4 (𝜑 → -𝐾 ∈ ℂ)
6 ovshftex 9707 . . . 4 ((𝐺𝑋 ∧ -𝐾 ∈ ℂ) → (𝐺 shift -𝐾) ∈ V)
72, 5, 6syl2anc 403 . . 3 (𝜑 → (𝐺 shift -𝐾) ∈ V)
8 climshft2.5 . . 3 (𝜑𝐹𝑊)
9 climshft2.2 . . 3 (𝜑𝑀 ∈ ℤ)
10 funi 4952 . . . . . . . 8 Fun I
11 elex 2610 . . . . . . . . . 10 (𝐺𝑋𝐺 ∈ V)
122, 11syl 14 . . . . . . . . 9 (𝜑𝐺 ∈ V)
13 dmi 4568 . . . . . . . . 9 dom I = V
1412, 13syl6eleqr 2172 . . . . . . . 8 (𝜑𝐺 ∈ dom I )
15 funfvex 5212 . . . . . . . 8 ((Fun I ∧ 𝐺 ∈ dom I ) → ( I ‘𝐺) ∈ V)
1610, 14, 15sylancr 405 . . . . . . 7 (𝜑 → ( I ‘𝐺) ∈ V)
1716adantr 270 . . . . . 6 ((𝜑𝑘𝑍) → ( I ‘𝐺) ∈ V)
184adantr 270 . . . . . 6 ((𝜑𝑘𝑍) → 𝐾 ∈ ℂ)
19 eluzelz 8628 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
2019, 1eleq2s 2173 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℤ)
2120zcnd 8470 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℂ)
2221adantl 271 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘 ∈ ℂ)
23 shftval4g 9725 . . . . . 6 ((( I ‘𝐺) ∈ V ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
2417, 18, 22, 23syl3anc 1169 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
25 fvi 5251 . . . . . . . . 9 (𝐺𝑋 → ( I ‘𝐺) = 𝐺)
262, 25syl 14 . . . . . . . 8 (𝜑 → ( I ‘𝐺) = 𝐺)
2726adantr 270 . . . . . . 7 ((𝜑𝑘𝑍) → ( I ‘𝐺) = 𝐺)
2827oveq1d 5547 . . . . . 6 ((𝜑𝑘𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾))
2928fveq1d 5200 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘))
30 addcom 7245 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
314, 21, 30syl2an 283 . . . . . 6 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
3227, 31fveq12d 5204 . . . . 5 ((𝜑𝑘𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾)))
3324, 29, 323eqtr3d 2121 . . . 4 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾)))
34 climshft2.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
3533, 34eqtrd 2113 . . 3 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹𝑘))
361, 7, 8, 9, 35climeq 10138 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐹𝐴))
373znegcld 8471 . . 3 (𝜑 → -𝐾 ∈ ℤ)
38 climshft 10143 . . 3 ((-𝐾 ∈ ℤ ∧ 𝐺𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
3937, 2, 38syl2anc 403 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
4036, 39bitr3d 188 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  Vcvv 2601   class class class wbr 3785   I cid 4043  dom cdm 4363  Fun wfun 4916  cfv 4922  (class class class)co 5532  cc 6979   + caddc 6984  -cneg 7280  cz 8351  cuz 8619   shift cshi 9702  cli 10117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-shft 9703  df-clim 10118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator