| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecopqsi | GIF version | ||
| Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.) |
| Ref | Expression |
|---|---|
| ecopqsi.1 | ⊢ 𝑅 ∈ V |
| ecopqsi.2 | ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) |
| Ref | Expression |
|---|---|
| ecopqsi | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4394 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴)) | |
| 2 | ecopqsi.1 | . . . 4 ⊢ 𝑅 ∈ V | |
| 3 | 2 | ecelqsi 6183 | . . 3 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ ((𝐴 × 𝐴) / 𝑅)) |
| 4 | ecopqsi.2 | . . 3 ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) | |
| 5 | 3, 4 | syl6eleqr 2172 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| 6 | 1, 5 | syl 14 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 Vcvv 2601 〈cop 3401 × cxp 4361 [cec 6127 / cqs 6128 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-ec 6131 df-qs 6135 |
| This theorem is referenced by: brecop 6219 recexgt0sr 6950 |
| Copyright terms: Public domain | W3C validator |