| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecovicom | GIF version | ||
| Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by Jim Kingdon, 15-Sep-2019.) |
| Ref | Expression |
|---|---|
| ecovicom.1 | ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) |
| ecovicom.2 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) |
| ecovicom.3 | ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) |
| ecovicom.4 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐷 = 𝐻) |
| ecovicom.5 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐺 = 𝐽) |
| Ref | Expression |
|---|---|
| ecovicom | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovicom.1 | . 2 ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) | |
| 2 | oveq1 5539 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = (𝐴 + [〈𝑧, 𝑤〉] ∼ )) | |
| 3 | oveq2 5540 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + 𝐴)) | |
| 4 | 2, 3 | eqeq12d 2095 | . 2 ⊢ ([〈𝑥, 𝑦〉] ∼ = 𝐴 → (([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) ↔ (𝐴 + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + 𝐴))) |
| 5 | oveq2 5540 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ∼ = 𝐵 → (𝐴 + [〈𝑧, 𝑤〉] ∼ ) = (𝐴 + 𝐵)) | |
| 6 | oveq1 5539 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ∼ = 𝐵 → ([〈𝑧, 𝑤〉] ∼ + 𝐴) = (𝐵 + 𝐴)) | |
| 7 | 5, 6 | eqeq12d 2095 | . 2 ⊢ ([〈𝑧, 𝑤〉] ∼ = 𝐵 → ((𝐴 + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
| 8 | ecovicom.4 | . . . 4 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐷 = 𝐻) | |
| 9 | ecovicom.5 | . . . 4 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐺 = 𝐽) | |
| 10 | opeq12 3572 | . . . . 5 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → 〈𝐷, 𝐺〉 = 〈𝐻, 𝐽〉) | |
| 11 | 10 | eceq1d 6165 | . . . 4 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → [〈𝐷, 𝐺〉] ∼ = [〈𝐻, 𝐽〉] ∼ ) |
| 12 | 8, 9, 11 | syl2anc 403 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → [〈𝐷, 𝐺〉] ∼ = [〈𝐻, 𝐽〉] ∼ ) |
| 13 | ecovicom.2 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) | |
| 14 | ecovicom.3 | . . . 4 ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) | |
| 15 | 14 | ancoms 264 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) |
| 16 | 12, 13, 15 | 3eqtr4d 2123 | . 2 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ )) |
| 17 | 1, 4, 7, 16 | 2ecoptocl 6217 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 〈cop 3401 × cxp 4361 (class class class)co 5532 [cec 6127 / cqs 6128 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fv 4930 df-ov 5535 df-ec 6131 df-qs 6135 |
| This theorem is referenced by: addcomnqg 6571 mulcomnqg 6573 addcomsrg 6932 mulcomsrg 6934 axmulcom 7037 |
| Copyright terms: Public domain | W3C validator |