ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemisucaccv GIF version

Theorem tfrlemisucaccv 5962
Description: We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 5969. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemisucfn.3 (𝜑𝑧 ∈ On)
tfrlemisucfn.4 (𝜑𝑔 Fn 𝑧)
tfrlemisucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrlemisucaccv (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,𝑥,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem tfrlemisucaccv
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlemisucfn.3 . . . 4 (𝜑𝑧 ∈ On)
2 suceloni 4245 . . . 4 (𝑧 ∈ On → suc 𝑧 ∈ On)
31, 2syl 14 . . 3 (𝜑 → suc 𝑧 ∈ On)
4 tfrlemisucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
5 tfrlemisucfn.2 . . . 4 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
6 tfrlemisucfn.4 . . . 4 (𝜑𝑔 Fn 𝑧)
7 tfrlemisucfn.5 . . . 4 (𝜑𝑔𝐴)
84, 5, 1, 6, 7tfrlemisucfn 5961 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧)
9 vex 2604 . . . . . 6 𝑢 ∈ V
109elsuc 4161 . . . . 5 (𝑢 ∈ suc 𝑧 ↔ (𝑢𝑧𝑢 = 𝑧))
11 vex 2604 . . . . . . . . . . 11 𝑔 ∈ V
124, 11tfrlem3a 5948 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
137, 12sylib 120 . . . . . . . . 9 (𝜑 → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
14 simprrr 506 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))
15 simprrl 505 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → 𝑔 Fn 𝑣)
166adantr 270 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → 𝑔 Fn 𝑧)
17 fndmu 5020 . . . . . . . . . . . 12 ((𝑔 Fn 𝑣𝑔 Fn 𝑧) → 𝑣 = 𝑧)
1815, 16, 17syl2anc 403 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → 𝑣 = 𝑧)
1918raleqdv 2555 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → (∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
2014, 19mpbid 145 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ On ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))) → ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))
2113, 20rexlimddv 2481 . . . . . . . 8 (𝜑 → ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))
2221r19.21bi 2449 . . . . . . 7 ((𝜑𝑢𝑧) → (𝑔𝑢) = (𝐹‘(𝑔𝑢)))
23 elirrv 4291 . . . . . . . . . . 11 ¬ 𝑢𝑢
24 elequ2 1641 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑢𝑧𝑢𝑢))
2523, 24mtbiri 632 . . . . . . . . . 10 (𝑧 = 𝑢 → ¬ 𝑢𝑧)
2625necon2ai 2299 . . . . . . . . 9 (𝑢𝑧𝑧𝑢)
2726adantl 271 . . . . . . . 8 ((𝜑𝑢𝑧) → 𝑧𝑢)
28 fvunsng 5378 . . . . . . . 8 ((𝑢 ∈ V ∧ 𝑧𝑢) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝑔𝑢))
299, 27, 28sylancr 405 . . . . . . 7 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝑔𝑢))
30 eloni 4130 . . . . . . . . . . . 12 (𝑧 ∈ On → Ord 𝑧)
311, 30syl 14 . . . . . . . . . . 11 (𝜑 → Ord 𝑧)
32 ordelss 4134 . . . . . . . . . . 11 ((Ord 𝑧𝑢𝑧) → 𝑢𝑧)
3331, 32sylan 277 . . . . . . . . . 10 ((𝜑𝑢𝑧) → 𝑢𝑧)
34 resabs1 4658 . . . . . . . . . 10 (𝑢𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))
3533, 34syl 14 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))
36 elirrv 4291 . . . . . . . . . . . 12 ¬ 𝑧𝑧
37 fsnunres 5385 . . . . . . . . . . . 12 ((𝑔 Fn 𝑧 ∧ ¬ 𝑧𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) = 𝑔)
386, 36, 37sylancl 404 . . . . . . . . . . 11 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) = 𝑔)
3938reseq1d 4629 . . . . . . . . . 10 (𝜑 → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
4039adantr 270 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
4135, 40eqtr3d 2115 . . . . . . . 8 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢) = (𝑔𝑢))
4241fveq2d 5202 . . . . . . 7 ((𝜑𝑢𝑧) → (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)) = (𝐹‘(𝑔𝑢)))
4322, 29, 423eqtr4d 2123 . . . . . 6 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
445tfrlem3-2d 5951 . . . . . . . . . 10 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
4544simprd 112 . . . . . . . . 9 (𝜑 → (𝐹𝑔) ∈ V)
46 fndm 5018 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
476, 46syl 14 . . . . . . . . . . 11 (𝜑 → dom 𝑔 = 𝑧)
4847eleq2d 2148 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ dom 𝑔𝑧𝑧))
4936, 48mtbiri 632 . . . . . . . . 9 (𝜑 → ¬ 𝑧 ∈ dom 𝑔)
50 fsnunfv 5384 . . . . . . . . 9 ((𝑧 ∈ On ∧ (𝐹𝑔) ∈ V ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑧) = (𝐹𝑔))
511, 45, 49, 50syl3anc 1169 . . . . . . . 8 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑧) = (𝐹𝑔))
5251adantr 270 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑧) = (𝐹𝑔))
53 simpr 108 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → 𝑢 = 𝑧)
5453fveq2d 5202 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑧))
55 reseq2 4625 . . . . . . . . 9 (𝑢 = 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑧))
5655, 38sylan9eqr 2135 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢) = 𝑔)
5756fveq2d 5202 . . . . . . 7 ((𝜑𝑢 = 𝑧) → (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)) = (𝐹𝑔))
5852, 54, 573eqtr4d 2123 . . . . . 6 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
5943, 58jaodan 743 . . . . 5 ((𝜑 ∧ (𝑢𝑧𝑢 = 𝑧)) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
6010, 59sylan2b 281 . . . 4 ((𝜑𝑢 ∈ suc 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
6160ralrimiva 2434 . . 3 (𝜑 → ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))
62 fneq2 5008 . . . . 5 (𝑤 = suc 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ↔ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧))
63 raleq 2549 . . . . 5 (𝑤 = suc 𝑧 → (∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)) ↔ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))))
6462, 63anbi12d 456 . . . 4 (𝑤 = suc 𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))))
6564rspcev 2701 . . 3 ((suc 𝑧 ∈ On ∧ ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))) → ∃𝑤 ∈ On ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))))
663, 8, 61, 65syl12anc 1167 . 2 (𝜑 → ∃𝑤 ∈ On ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢))))
67 vex 2604 . . . . . 6 𝑧 ∈ V
68 opexg 3983 . . . . . 6 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
6967, 45, 68sylancr 405 . . . . 5 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
70 snexg 3956 . . . . 5 (⟨𝑧, (𝐹𝑔)⟩ ∈ V → {⟨𝑧, (𝐹𝑔)⟩} ∈ V)
7169, 70syl 14 . . . 4 (𝜑 → {⟨𝑧, (𝐹𝑔)⟩} ∈ V)
72 unexg 4196 . . . 4 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐹𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V)
7311, 71, 72sylancr 405 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V)
744tfrlem3ag 5947 . . 3 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤 ∈ On ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))))
7573, 74syl 14 . 2 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤 ∈ On ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})‘𝑢) = (𝐹‘((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ↾ 𝑢)))))
7666, 75mpbird 165 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  wal 1282   = wceq 1284  wcel 1433  {cab 2067  wne 2245  wral 2348  wrex 2349  Vcvv 2601  cun 2971  wss 2973  {csn 3398  cop 3401  Ord word 4117  Oncon0 4118  suc csuc 4120  dom cdm 4363  cres 4365  Fun wfun 4916   Fn wfn 4917  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by:  tfrlemibacc  5963  tfrlemi14d  5970
  Copyright terms: Public domain W3C validator