ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elni GIF version

Theorem elni 6498
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
elni (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))

Proof of Theorem elni
StepHypRef Expression
1 df-ni 6494 . . 3 N = (ω ∖ {∅})
21eleq2i 2145 . 2 (𝐴N𝐴 ∈ (ω ∖ {∅}))
3 eldifsn 3517 . 2 (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
42, 3bitri 182 1 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wcel 1433  wne 2245  cdif 2970  c0 3251  {csn 3398  ωcom 4331  Ncnpi 6462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-v 2603  df-dif 2975  df-sn 3404  df-ni 6494
This theorem is referenced by:  0npi  6503  elni2  6504  1pi  6505  addclpi  6517  mulclpi  6518  nlt1pig  6531  indpi  6532  nqnq0pi  6628  prarloclemcalc  6692
  Copyright terms: Public domain W3C validator