![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elni | GIF version |
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
elni | ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 6494 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | 1 | eleq2i 2145 | . 2 ⊢ (𝐴 ∈ N ↔ 𝐴 ∈ (ω ∖ {∅})) |
3 | eldifsn 3517 | . 2 ⊢ (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
4 | 2, 3 | bitri 182 | 1 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 ∈ wcel 1433 ≠ wne 2245 ∖ cdif 2970 ∅c0 3251 {csn 3398 ωcom 4331 Ncnpi 6462 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-v 2603 df-dif 2975 df-sn 3404 df-ni 6494 |
This theorem is referenced by: 0npi 6503 elni2 6504 1pi 6505 addclpi 6517 mulclpi 6518 nlt1pig 6531 indpi 6532 nqnq0pi 6628 prarloclemcalc 6692 |
Copyright terms: Public domain | W3C validator |