ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0nn GIF version

Theorem elnn0nn 8330
Description: The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elnn0nn (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ))

Proof of Theorem elnn0nn
StepHypRef Expression
1 nn0cn 8298 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
2 nn0p1nn 8327 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
31, 2jca 300 . 2 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ))
4 simpl 107 . . . 4 ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → 𝑁 ∈ ℂ)
5 ax-1cn 7069 . . . 4 1 ∈ ℂ
6 pncan 7314 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
74, 5, 6sylancl 404 . . 3 ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((𝑁 + 1) − 1) = 𝑁)
8 nnm1nn0 8329 . . . 4 ((𝑁 + 1) ∈ ℕ → ((𝑁 + 1) − 1) ∈ ℕ0)
98adantl 271 . . 3 ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((𝑁 + 1) − 1) ∈ ℕ0)
107, 9eqeltrrd 2156 . 2 ((𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → 𝑁 ∈ ℕ0)
113, 10impbii 124 1 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1284  wcel 1433  (class class class)co 5532  cc 6979  1c1 6982   + caddc 6984  cmin 7279  cn 8039  0cn0 8288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281  df-inn 8040  df-n0 8289
This theorem is referenced by:  elnnnn0  8331  peano2z  8387
  Copyright terms: Public domain W3C validator