ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ovi GIF version

Theorem f1ovi 5185
Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.)
Assertion
Ref Expression
f1ovi I :V–1-1-onto→V

Proof of Theorem f1ovi
StepHypRef Expression
1 f1oi 5184 . 2 ( I ↾ V):V–1-1-onto→V
2 reli 4483 . . . 4 Rel I
3 dfrel3 4798 . . . 4 (Rel I ↔ ( I ↾ V) = I )
42, 3mpbi 143 . . 3 ( I ↾ V) = I
5 f1oeq1 5137 . . 3 (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V))
64, 5ax-mp 7 . 2 (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)
71, 6mpbi 143 1 I :V–1-1-onto→V
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1284  Vcvv 2601   I cid 4043  cres 4365  Rel wrel 4368  1-1-ontowf1o 4921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator