ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt2co GIF version

Theorem fmpt2co 5857
Description: Composition of two functions. Variation of fmptco 5351 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
fmpt2co.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑅𝐶)
fmpt2co.2 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝑅))
fmpt2co.3 (𝜑𝐺 = (𝑧𝐶𝑆))
fmpt2co.4 (𝑧 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
fmpt2co (𝜑 → (𝐺𝐹) = (𝑥𝐴, 𝑦𝐵𝑇))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑧,𝐶,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑧,𝑅   𝑧,𝑇
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐵(𝑧)   𝑅(𝑥,𝑦)   𝑆(𝑧)   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem fmpt2co
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmpt2co.1 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑅𝐶)
21ralrimivva 2443 . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝑅𝐶)
3 eqid 2081 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝑅) = (𝑥𝐴, 𝑦𝐵𝑅)
43fmpt2 5847 . . . . 5 (∀𝑥𝐴𝑦𝐵 𝑅𝐶 ↔ (𝑥𝐴, 𝑦𝐵𝑅):(𝐴 × 𝐵)⟶𝐶)
52, 4sylib 120 . . . 4 (𝜑 → (𝑥𝐴, 𝑦𝐵𝑅):(𝐴 × 𝐵)⟶𝐶)
6 nfcv 2219 . . . . . . 7 𝑢𝑅
7 nfcv 2219 . . . . . . 7 𝑣𝑅
8 nfcv 2219 . . . . . . . 8 𝑥𝑣
9 nfcsb1v 2938 . . . . . . . 8 𝑥𝑢 / 𝑥𝑅
108, 9nfcsb 2940 . . . . . . 7 𝑥𝑣 / 𝑦𝑢 / 𝑥𝑅
11 nfcsb1v 2938 . . . . . . 7 𝑦𝑣 / 𝑦𝑢 / 𝑥𝑅
12 csbeq1a 2916 . . . . . . . 8 (𝑥 = 𝑢𝑅 = 𝑢 / 𝑥𝑅)
13 csbeq1a 2916 . . . . . . . 8 (𝑦 = 𝑣𝑢 / 𝑥𝑅 = 𝑣 / 𝑦𝑢 / 𝑥𝑅)
1412, 13sylan9eq 2133 . . . . . . 7 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑅 = 𝑣 / 𝑦𝑢 / 𝑥𝑅)
156, 7, 10, 11, 14cbvmpt2 5603 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝑅) = (𝑢𝐴, 𝑣𝐵𝑣 / 𝑦𝑢 / 𝑥𝑅)
16 vex 2604 . . . . . . . . . 10 𝑢 ∈ V
17 vex 2604 . . . . . . . . . 10 𝑣 ∈ V
1816, 17op2ndd 5796 . . . . . . . . 9 (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd𝑤) = 𝑣)
1918csbeq1d 2914 . . . . . . . 8 (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 = 𝑣 / 𝑦(1st𝑤) / 𝑥𝑅)
2016, 17op1std 5795 . . . . . . . . . 10 (𝑤 = ⟨𝑢, 𝑣⟩ → (1st𝑤) = 𝑢)
2120csbeq1d 2914 . . . . . . . . 9 (𝑤 = ⟨𝑢, 𝑣⟩ → (1st𝑤) / 𝑥𝑅 = 𝑢 / 𝑥𝑅)
2221csbeq2dv 2931 . . . . . . . 8 (𝑤 = ⟨𝑢, 𝑣⟩ → 𝑣 / 𝑦(1st𝑤) / 𝑥𝑅 = 𝑣 / 𝑦𝑢 / 𝑥𝑅)
2319, 22eqtrd 2113 . . . . . . 7 (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 = 𝑣 / 𝑦𝑢 / 𝑥𝑅)
2423mpt2mpt 5616 . . . . . 6 (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅) = (𝑢𝐴, 𝑣𝐵𝑣 / 𝑦𝑢 / 𝑥𝑅)
2515, 24eqtr4i 2104 . . . . 5 (𝑥𝐴, 𝑦𝐵𝑅) = (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅)
2625fmpt 5340 . . . 4 (∀𝑤 ∈ (𝐴 × 𝐵)(2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅𝐶 ↔ (𝑥𝐴, 𝑦𝐵𝑅):(𝐴 × 𝐵)⟶𝐶)
275, 26sylibr 132 . . 3 (𝜑 → ∀𝑤 ∈ (𝐴 × 𝐵)(2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅𝐶)
28 fmpt2co.2 . . . 4 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝑅))
2928, 25syl6eq 2129 . . 3 (𝜑𝐹 = (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅))
30 fmpt2co.3 . . 3 (𝜑𝐺 = (𝑧𝐶𝑆))
3127, 29, 30fmptcos 5353 . 2 (𝜑 → (𝐺𝐹) = (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆))
3223csbeq1d 2914 . . . . 5 (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆 = 𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆)
3332mpt2mpt 5616 . . . 4 (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆) = (𝑢𝐴, 𝑣𝐵𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆)
34 nfcv 2219 . . . . 5 𝑢𝑅 / 𝑧𝑆
35 nfcv 2219 . . . . 5 𝑣𝑅 / 𝑧𝑆
36 nfcv 2219 . . . . . 6 𝑥𝑆
3710, 36nfcsb 2940 . . . . 5 𝑥𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆
38 nfcv 2219 . . . . . 6 𝑦𝑆
3911, 38nfcsb 2940 . . . . 5 𝑦𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆
4014csbeq1d 2914 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑅 / 𝑧𝑆 = 𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆)
4134, 35, 37, 39, 40cbvmpt2 5603 . . . 4 (𝑥𝐴, 𝑦𝐵𝑅 / 𝑧𝑆) = (𝑢𝐴, 𝑣𝐵𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆)
4233, 41eqtr4i 2104 . . 3 (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆) = (𝑥𝐴, 𝑦𝐵𝑅 / 𝑧𝑆)
4313impb 1134 . . . . 5 ((𝜑𝑥𝐴𝑦𝐵) → 𝑅𝐶)
44 nfcvd 2220 . . . . . 6 (𝑅𝐶𝑧𝑇)
45 fmpt2co.4 . . . . . 6 (𝑧 = 𝑅𝑆 = 𝑇)
4644, 45csbiegf 2946 . . . . 5 (𝑅𝐶𝑅 / 𝑧𝑆 = 𝑇)
4743, 46syl 14 . . . 4 ((𝜑𝑥𝐴𝑦𝐵) → 𝑅 / 𝑧𝑆 = 𝑇)
4847mpt2eq3dva 5589 . . 3 (𝜑 → (𝑥𝐴, 𝑦𝐵𝑅 / 𝑧𝑆) = (𝑥𝐴, 𝑦𝐵𝑇))
4942, 48syl5eq 2125 . 2 (𝜑 → (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆) = (𝑥𝐴, 𝑦𝐵𝑇))
5031, 49eqtrd 2113 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴, 𝑦𝐵𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919   = wceq 1284  wcel 1433  wral 2348  csb 2908  cop 3401  cmpt 3839   × cxp 4361  ccom 4367  wf 4918  cfv 4922  cmpt2 5534  1st c1st 5785  2nd c2nd 5786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788
This theorem is referenced by:  oprabco  5858
  Copyright terms: Public domain W3C validator