ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt2d GIF version

Theorem fmpt2d 5348
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmpt2d.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
fmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fmpt2d.3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐶)
Assertion
Ref Expression
fmpt2d (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐶   𝑦,𝐹   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem fmpt2d
StepHypRef Expression
1 fmpt2d.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 2434 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 eqid 2081 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 5045 . . . 4 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 14 . . 3 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 fmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 5009 . . 3 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 165 . 2 (𝜑𝐹 Fn 𝐴)
9 fmpt2d.3 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐶)
109ralrimiva 2434 . 2 (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ 𝐶)
11 ffnfv 5344 . 2 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) ∈ 𝐶))
128, 10, 11sylanbrc 408 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wral 2348  cmpt 3839   Fn wfn 4917  wf 4918  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator