ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbrfvb GIF version

Theorem fnbrfvb 5235
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnbrfvb ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))

Proof of Theorem fnbrfvb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2081 . . . 4 (𝐹𝐵) = (𝐹𝐵)
2 funfvex 5212 . . . . . 6 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ V)
32funfni 5019 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) ∈ V)
4 eqeq2 2090 . . . . . . . 8 (𝑥 = (𝐹𝐵) → ((𝐹𝐵) = 𝑥 ↔ (𝐹𝐵) = (𝐹𝐵)))
5 breq2 3789 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (𝐵𝐹𝑥𝐵𝐹(𝐹𝐵)))
64, 5bibi12d 233 . . . . . . 7 (𝑥 = (𝐹𝐵) → (((𝐹𝐵) = 𝑥𝐵𝐹𝑥) ↔ ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵))))
76imbi2d 228 . . . . . 6 (𝑥 = (𝐹𝐵) → (((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵)))))
8 fneu 5023 . . . . . . 7 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑥 𝐵𝐹𝑥)
9 tz6.12c 5224 . . . . . . 7 (∃!𝑥 𝐵𝐹𝑥 → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
108, 9syl 14 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
117, 10vtoclg 2658 . . . . 5 ((𝐹𝐵) ∈ V → ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵))))
123, 11mpcom 36 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵)))
131, 12mpbii 146 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵𝐹(𝐹𝐵))
14 breq2 3789 . . 3 ((𝐹𝐵) = 𝐶 → (𝐵𝐹(𝐹𝐵) ↔ 𝐵𝐹𝐶))
1513, 14syl5ibcom 153 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
16 fnfun 5016 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
17 funbrfv 5233 . . . 4 (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
1816, 17syl 14 . . 3 (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
1918adantr 270 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
2015, 19impbid 127 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  ∃!weu 1941  Vcvv 2601   class class class wbr 3785  Fun wfun 4916   Fn wfn 4917  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by:  fnopfvb  5236  funbrfvb  5237  dffn5im  5240  fnsnfv  5253  fndmdif  5293  dffo4  5336  dff13  5428  isoini  5477  1stconst  5862  2ndconst  5863
  Copyright terms: Public domain W3C validator