| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fornex | GIF version | ||
| Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| fornex | ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun 5127 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
| 2 | funrnex 5761 | . . . 4 ⊢ (dom 𝐹 ∈ 𝐶 → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
| 3 | 1, 2 | syl5com 29 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (dom 𝐹 ∈ 𝐶 → ran 𝐹 ∈ V)) |
| 4 | fof 5126 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 5 | fdm 5070 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
| 7 | 6 | eleq1d 2147 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (dom 𝐹 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) |
| 8 | forn 5129 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 9 | 8 | eleq1d 2147 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)) |
| 10 | 3, 7, 9 | 3imtr3d 200 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ 𝐶 → 𝐵 ∈ V)) |
| 11 | 10 | com12 30 | 1 ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 Vcvv 2601 dom cdm 4363 ran crn 4364 Fun wfun 4916 ⟶wf 4918 –onto→wfo 4920 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 |
| This theorem is referenced by: f1dmex 5763 f1oeng 6260 |
| Copyright terms: Public domain | W3C validator |