| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fovcl | GIF version | ||
| Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) |
| Ref | Expression |
|---|---|
| fovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
| Ref | Expression |
|---|---|
| fovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcl.1 | . . 3 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
| 2 | ffnov 5625 | . . . 4 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶)) | |
| 3 | 2 | simprbi 269 | . . 3 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶) |
| 4 | 1, 3 | ax-mp 7 | . 2 ⊢ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶 |
| 5 | oveq1 5539 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
| 6 | 5 | eleq1d 2147 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝑦) ∈ 𝐶)) |
| 7 | oveq2 5540 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
| 8 | 7 | eleq1d 2147 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) |
| 9 | 6, 8 | rspc2v 2713 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶 → (𝐴𝐹𝐵) ∈ 𝐶)) |
| 10 | 4, 9 | mpi 15 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∀wral 2348 × cxp 4361 Fn wfn 4917 ⟶wf 4918 (class class class)co 5532 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-ov 5535 |
| This theorem is referenced by: ixxssxr 8923 fzof 9154 elfzoelz 9157 fzoval 9158 |
| Copyright terms: Public domain | W3C validator |