![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funcnv | GIF version |
Description: The converse of a class is a function iff the class is single-rooted, which means that for any 𝑦 in the range of 𝐴 there is at most one 𝑥 such that 𝑥𝐴𝑦. Definition of single-rooted in [Enderton] p. 43. See funcnv2 4979 for a simpler version. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
funcnv | ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2604 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | vex 2604 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | brelrn 4585 | . . . . . 6 ⊢ (𝑥𝐴𝑦 → 𝑦 ∈ ran 𝐴) |
4 | 3 | pm4.71ri 384 | . . . . 5 ⊢ (𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) |
5 | 4 | mobii 1978 | . . . 4 ⊢ (∃*𝑥 𝑥𝐴𝑦 ↔ ∃*𝑥(𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦)) |
6 | moanimv 2016 | . . . 4 ⊢ (∃*𝑥(𝑦 ∈ ran 𝐴 ∧ 𝑥𝐴𝑦) ↔ (𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦)) | |
7 | 5, 6 | bitri 182 | . . 3 ⊢ (∃*𝑥 𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦)) |
8 | 7 | albii 1399 | . 2 ⊢ (∀𝑦∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦)) |
9 | funcnv2 4979 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) | |
10 | df-ral 2353 | . 2 ⊢ (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦)) | |
11 | 8, 9, 10 | 3bitr4i 210 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 ∈ wcel 1433 ∃*wmo 1942 ∀wral 2348 class class class wbr 3785 ◡ccnv 4362 ran crn 4364 Fun wfun 4916 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-fun 4924 |
This theorem is referenced by: funcnv3 4981 fncnv 4985 |
Copyright terms: Public domain | W3C validator |