| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funpr | GIF version | ||
| Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
| Ref | Expression |
|---|---|
| funpr.1 | ⊢ 𝐴 ∈ V |
| funpr.2 | ⊢ 𝐵 ∈ V |
| funpr.3 | ⊢ 𝐶 ∈ V |
| funpr.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| funpr | ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funpr.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | funpr.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | pm3.2i 266 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
| 4 | funpr.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 5 | funpr.4 | . . 3 ⊢ 𝐷 ∈ V | |
| 6 | 4, 5 | pm3.2i 266 | . 2 ⊢ (𝐶 ∈ V ∧ 𝐷 ∈ V) |
| 7 | funprg 4969 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | |
| 8 | 3, 6, 7 | mp3an12 1258 | 1 ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1433 ≠ wne 2245 Vcvv 2601 {cpr 3399 〈cop 3401 Fun wfun 4916 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-fun 4924 |
| This theorem is referenced by: funtp 4972 fpr 5366 |
| Copyright terms: Public domain | W3C validator |