![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvmptss2 | GIF version |
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fvmptss2.1 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) |
fvmptss2.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptss2 | ⊢ (𝐹‘𝐷) ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvss 5209 | . 2 ⊢ (∀𝑦(𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) → (𝐹‘𝐷) ⊆ 𝐶) | |
2 | fvmptss2.2 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funmpt2 4959 | . . . . 5 ⊢ Fun 𝐹 |
4 | funrel 4939 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | 3, 4 | ax-mp 7 | . . . 4 ⊢ Rel 𝐹 |
6 | 5 | brrelexi 4402 | . . 3 ⊢ (𝐷𝐹𝑦 → 𝐷 ∈ V) |
7 | nfcv 2219 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
8 | nfmpt1 3871 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | 2, 8 | nfcxfr 2216 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
10 | nfcv 2219 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
11 | 7, 9, 10 | nfbr 3829 | . . . . 5 ⊢ Ⅎ𝑥 𝐷𝐹𝑦 |
12 | nfv 1461 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐶 | |
13 | 11, 12 | nfim 1504 | . . . 4 ⊢ Ⅎ𝑥(𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) |
14 | breq1 3788 | . . . . 5 ⊢ (𝑥 = 𝐷 → (𝑥𝐹𝑦 ↔ 𝐷𝐹𝑦)) | |
15 | fvmptss2.1 | . . . . . 6 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
16 | 15 | sseq2d 3027 | . . . . 5 ⊢ (𝑥 = 𝐷 → (𝑦 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐶)) |
17 | 14, 16 | imbi12d 232 | . . . 4 ⊢ (𝑥 = 𝐷 → ((𝑥𝐹𝑦 → 𝑦 ⊆ 𝐵) ↔ (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶))) |
18 | df-br 3786 | . . . . 5 ⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) | |
19 | opabid 4012 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
20 | eqimss 3051 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → 𝑦 ⊆ 𝐵) | |
21 | 20 | adantl 271 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 ⊆ 𝐵) |
22 | 19, 21 | sylbi 119 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} → 𝑦 ⊆ 𝐵) |
23 | df-mpt 3841 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
24 | 2, 23 | eqtri 2101 | . . . . . 6 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
25 | 22, 24 | eleq2s 2173 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ⊆ 𝐵) |
26 | 18, 25 | sylbi 119 | . . . 4 ⊢ (𝑥𝐹𝑦 → 𝑦 ⊆ 𝐵) |
27 | 7, 13, 17, 26 | vtoclgf 2657 | . . 3 ⊢ (𝐷 ∈ V → (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶)) |
28 | 6, 27 | mpcom 36 | . 2 ⊢ (𝐷𝐹𝑦 → 𝑦 ⊆ 𝐶) |
29 | 1, 28 | mpg 1380 | 1 ⊢ (𝐹‘𝐷) ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ⊆ wss 2973 〈cop 3401 class class class wbr 3785 {copab 3838 ↦ cmpt 3839 Rel wrel 4368 Fun wfun 4916 ‘cfv 4922 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-iota 4887 df-fun 4924 df-fv 4930 |
This theorem is referenced by: mptfvex 5277 |
Copyright terms: Public domain | W3C validator |