![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzdisj | GIF version |
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
fzdisj | ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3155 | . . . 4 ⊢ (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) ↔ (𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁))) | |
2 | elfzel1 9044 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
3 | 2 | adantl 271 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) |
4 | 3 | zred 8469 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ) |
5 | elfzelz 9045 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
6 | 5 | zred 8469 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
7 | 6 | adantl 271 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ) |
8 | elfzel2 9043 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝐾 ∈ ℤ) | |
9 | 8 | adantr 270 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) |
10 | 9 | zred 8469 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ) |
11 | elfzle1 9046 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑥) | |
12 | 11 | adantl 271 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝑥) |
13 | elfzle2 9047 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ≤ 𝐾) | |
14 | 13 | adantr 270 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ≤ 𝐾) |
15 | 4, 7, 10, 12, 14 | letrd 7233 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝐾) |
16 | 4, 10 | lenltd 7227 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑀 ≤ 𝐾 ↔ ¬ 𝐾 < 𝑀)) |
17 | 15, 16 | mpbid 145 | . . . 4 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀) |
18 | 1, 17 | sylbi 119 | . . 3 ⊢ (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀) |
19 | 18 | con2i 589 | . 2 ⊢ (𝐾 < 𝑀 → ¬ 𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁))) |
20 | 19 | eq0rdv 3288 | 1 ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∩ cin 2972 ∅c0 3251 class class class wbr 3785 (class class class)co 5532 ℝcr 6980 < clt 7153 ≤ cle 7154 ℤcz 8351 ...cfz 9029 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltwlin 7089 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-neg 7282 df-z 8352 df-uz 8620 df-fz 9030 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |