![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iota4 | GIF version |
Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.) |
Ref | Expression |
---|---|
iota4 | ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 1944 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | bi2 128 | . . . . . 6 ⊢ ((𝜑 ↔ 𝑥 = 𝑧) → (𝑥 = 𝑧 → 𝜑)) | |
3 | 2 | alimi 1384 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑥(𝑥 = 𝑧 → 𝜑)) |
4 | sb2 1690 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝑧 → 𝜑) → [𝑧 / 𝑥]𝜑) | |
5 | 3, 4 | syl 14 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → [𝑧 / 𝑥]𝜑) |
6 | iotaval 4898 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
7 | 6 | eqcomd 2086 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑)) |
8 | dfsbcq2 2818 | . . . . 5 ⊢ (𝑧 = (℩𝑥𝜑) → ([𝑧 / 𝑥]𝜑 ↔ [(℩𝑥𝜑) / 𝑥]𝜑)) | |
9 | 7, 8 | syl 14 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ([𝑧 / 𝑥]𝜑 ↔ [(℩𝑥𝜑) / 𝑥]𝜑)) |
10 | 5, 9 | mpbid 145 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑) |
11 | 10 | exlimiv 1529 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑) |
12 | 1, 11 | sylbi 119 | 1 ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 = wceq 1284 ∃wex 1421 [wsb 1685 ∃!weu 1941 [wsbc 2815 ℩cio 4885 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 df-iota 4887 |
This theorem is referenced by: iota4an 4906 iotacl 4910 |
Copyright terms: Public domain | W3C validator |