ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota4 GIF version

Theorem iota4 4905
Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)

Proof of Theorem iota4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-eu 1944 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 bi2 128 . . . . . 6 ((𝜑𝑥 = 𝑧) → (𝑥 = 𝑧𝜑))
32alimi 1384 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑥(𝑥 = 𝑧𝜑))
4 sb2 1690 . . . . 5 (∀𝑥(𝑥 = 𝑧𝜑) → [𝑧 / 𝑥]𝜑)
53, 4syl 14 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → [𝑧 / 𝑥]𝜑)
6 iotaval 4898 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
76eqcomd 2086 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → 𝑧 = (℩𝑥𝜑))
8 dfsbcq2 2818 . . . . 5 (𝑧 = (℩𝑥𝜑) → ([𝑧 / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜑))
97, 8syl 14 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → ([𝑧 / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜑))
105, 9mpbid 145 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑)
1110exlimiv 1529 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → [(℩𝑥𝜑) / 𝑥]𝜑)
121, 11sylbi 119 1 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282   = wceq 1284  wex 1421  [wsb 1685  ∃!weu 1941  [wsbc 2815  cio 4885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-sn 3404  df-pr 3405  df-uni 3602  df-iota 4887
This theorem is referenced by:  iota4an  4906  iotacl  4910
  Copyright terms: Public domain W3C validator