ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiseq GIF version

Theorem nfiseq 9438
Description: Hypothesis builder for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
nfiseq.1 𝑥𝑀
nfiseq.2 𝑥 +
nfiseq.3 𝑥𝐹
nfiseq.4 𝑥𝑆
Assertion
Ref Expression
nfiseq 𝑥seq𝑀( + , 𝐹, 𝑆)

Proof of Theorem nfiseq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iseq 9432 . 2 seq𝑀( + , 𝐹, 𝑆) = ran frec((𝑦 ∈ (ℤ𝑀), 𝑧𝑆 ↦ ⟨(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
2 nfcv 2219 . . . . . 6 𝑥
3 nfiseq.1 . . . . . 6 𝑥𝑀
42, 3nffv 5205 . . . . 5 𝑥(ℤ𝑀)
5 nfiseq.4 . . . . 5 𝑥𝑆
6 nfcv 2219 . . . . . 6 𝑥(𝑦 + 1)
7 nfcv 2219 . . . . . . 7 𝑥𝑧
8 nfiseq.2 . . . . . . 7 𝑥 +
9 nfiseq.3 . . . . . . . 8 𝑥𝐹
109, 6nffv 5205 . . . . . . 7 𝑥(𝐹‘(𝑦 + 1))
117, 8, 10nfov 5555 . . . . . 6 𝑥(𝑧 + (𝐹‘(𝑦 + 1)))
126, 11nfop 3586 . . . . 5 𝑥⟨(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))⟩
134, 5, 12nfmpt2 5593 . . . 4 𝑥(𝑦 ∈ (ℤ𝑀), 𝑧𝑆 ↦ ⟨(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))⟩)
149, 3nffv 5205 . . . . 5 𝑥(𝐹𝑀)
153, 14nfop 3586 . . . 4 𝑥𝑀, (𝐹𝑀)⟩
1613, 15nffrec 6005 . . 3 𝑥frec((𝑦 ∈ (ℤ𝑀), 𝑧𝑆 ↦ ⟨(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
1716nfrn 4597 . 2 𝑥ran frec((𝑦 ∈ (ℤ𝑀), 𝑧𝑆 ↦ ⟨(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
181, 17nfcxfr 2216 1 𝑥seq𝑀( + , 𝐹, 𝑆)
Colors of variables: wff set class
Syntax hints:  wnfc 2206  cop 3401  ran crn 4364  cfv 4922  (class class class)co 5532  cmpt2 5534  freccfrec 6000  1c1 6982   + caddc 6984  cuz 8619  seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-un 2977  df-in 2979  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-xp 4369  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-iota 4887  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-recs 5943  df-frec 6001  df-iseq 9432
This theorem is referenced by:  nfsum1  10193  nfsum  10194
  Copyright terms: Public domain W3C validator