| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfiseq | GIF version | ||
| Description: Hypothesis builder for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.) |
| Ref | Expression |
|---|---|
| nfiseq.1 | ⊢ Ⅎ𝑥𝑀 |
| nfiseq.2 | ⊢ Ⅎ𝑥 + |
| nfiseq.3 | ⊢ Ⅎ𝑥𝐹 |
| nfiseq.4 | ⊢ Ⅎ𝑥𝑆 |
| Ref | Expression |
|---|---|
| nfiseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹, 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iseq 9432 | . 2 ⊢ seq𝑀( + , 𝐹, 𝑆) = ran frec((𝑦 ∈ (ℤ≥‘𝑀), 𝑧 ∈ 𝑆 ↦ 〈(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 2 | nfcv 2219 | . . . . . 6 ⊢ Ⅎ𝑥ℤ≥ | |
| 3 | nfiseq.1 | . . . . . 6 ⊢ Ⅎ𝑥𝑀 | |
| 4 | 2, 3 | nffv 5205 | . . . . 5 ⊢ Ⅎ𝑥(ℤ≥‘𝑀) |
| 5 | nfiseq.4 | . . . . 5 ⊢ Ⅎ𝑥𝑆 | |
| 6 | nfcv 2219 | . . . . . 6 ⊢ Ⅎ𝑥(𝑦 + 1) | |
| 7 | nfcv 2219 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
| 8 | nfiseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
| 9 | nfiseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 10 | 9, 6 | nffv 5205 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑦 + 1)) |
| 11 | 7, 8, 10 | nfov 5555 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + (𝐹‘(𝑦 + 1))) |
| 12 | 6, 11 | nfop 3586 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))〉 |
| 13 | 4, 5, 12 | nfmpt2 5593 | . . . 4 ⊢ Ⅎ𝑥(𝑦 ∈ (ℤ≥‘𝑀), 𝑧 ∈ 𝑆 ↦ 〈(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))〉) |
| 14 | 9, 3 | nffv 5205 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
| 15 | 3, 14 | nfop 3586 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
| 16 | 13, 15 | nffrec 6005 | . . 3 ⊢ Ⅎ𝑥frec((𝑦 ∈ (ℤ≥‘𝑀), 𝑧 ∈ 𝑆 ↦ 〈(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 17 | 16 | nfrn 4597 | . 2 ⊢ Ⅎ𝑥ran frec((𝑦 ∈ (ℤ≥‘𝑀), 𝑧 ∈ 𝑆 ↦ 〈(𝑦 + 1), (𝑧 + (𝐹‘(𝑦 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 18 | 1, 17 | nfcxfr 2216 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹, 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2206 〈cop 3401 ran crn 4364 ‘cfv 4922 (class class class)co 5532 ↦ cmpt2 5534 freccfrec 6000 1c1 6982 + caddc 6984 ℤ≥cuz 8619 seqcseq 9431 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-un 2977 df-in 2979 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-xp 4369 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-iota 4887 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-recs 5943 df-frec 6001 df-iseq 9432 |
| This theorem is referenced by: nfsum1 10193 nfsum 10194 |
| Copyright terms: Public domain | W3C validator |