![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn1gt1 | GIF version |
Description: A positive integer is either one or greater than one. This is for ℕ; 0elnn 4358 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.) |
Ref | Expression |
---|---|
nn1gt1 | ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2087 | . . 3 ⊢ (𝑥 = 1 → (𝑥 = 1 ↔ 1 = 1)) | |
2 | breq2 3789 | . . 3 ⊢ (𝑥 = 1 → (1 < 𝑥 ↔ 1 < 1)) | |
3 | 1, 2 | orbi12d 739 | . 2 ⊢ (𝑥 = 1 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (1 = 1 ∨ 1 < 1))) |
4 | eqeq1 2087 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1)) | |
5 | breq2 3789 | . . 3 ⊢ (𝑥 = 𝑦 → (1 < 𝑥 ↔ 1 < 𝑦)) | |
6 | 4, 5 | orbi12d 739 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝑦 = 1 ∨ 1 < 𝑦))) |
7 | eqeq1 2087 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1)) | |
8 | breq2 3789 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (1 < 𝑥 ↔ 1 < (𝑦 + 1))) | |
9 | 7, 8 | orbi12d 739 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))) |
10 | eqeq1 2087 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1)) | |
11 | breq2 3789 | . . 3 ⊢ (𝑥 = 𝐴 → (1 < 𝑥 ↔ 1 < 𝐴)) | |
12 | 10, 11 | orbi12d 739 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 1 ∨ 1 < 𝑥) ↔ (𝐴 = 1 ∨ 1 < 𝐴))) |
13 | eqid 2081 | . . 3 ⊢ 1 = 1 | |
14 | 13 | orci 682 | . 2 ⊢ (1 = 1 ∨ 1 < 1) |
15 | nngt0 8064 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 0 < 𝑦) | |
16 | nnre 8046 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
17 | 1re 7118 | . . . . . 6 ⊢ 1 ∈ ℝ | |
18 | ltaddpos2 7557 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑦 ↔ 1 < (𝑦 + 1))) | |
19 | 16, 17, 18 | sylancl 404 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (0 < 𝑦 ↔ 1 < (𝑦 + 1))) |
20 | 15, 19 | mpbid 145 | . . . 4 ⊢ (𝑦 ∈ ℕ → 1 < (𝑦 + 1)) |
21 | 20 | olcd 685 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1))) |
22 | 21 | a1d 22 | . 2 ⊢ (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ 1 < 𝑦) → ((𝑦 + 1) = 1 ∨ 1 < (𝑦 + 1)))) |
23 | 3, 6, 9, 12, 14, 22 | nnind 8055 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∨ wo 661 = wceq 1284 ∈ wcel 1433 class class class wbr 3785 (class class class)co 5532 ℝcr 6980 0cc0 6981 1c1 6982 + caddc 6984 < clt 7153 ℕcn 8039 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-iota 4887 df-fv 4930 df-ov 5535 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-inn 8040 |
This theorem is referenced by: nngt1ne1 8073 resqrexlemglsq 9908 |
Copyright terms: Public domain | W3C validator |