| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnex | GIF version | ||
| Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnex | ⊢ ℕ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 7097 | . 2 ⊢ ℂ ∈ V | |
| 2 | nnsscn 8044 | . 2 ⊢ ℕ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 3916 | 1 ⊢ ℕ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 1433 Vcvv 2601 ℂcc 6979 ℕcn 8039 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-cnex 7067 ax-resscn 7068 ax-1re 7070 ax-addrcl 7073 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-in 2979 df-ss 2986 df-int 3637 df-inn 8040 |
| This theorem is referenced by: nn0ex 8294 nn0ennn 9425 climrecvg1n 10185 climcvg1nlem 10186 prmex 10495 |
| Copyright terms: Public domain | W3C validator |