ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprab2co GIF version

Theorem oprab2co 5859
Description: Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
Hypotheses
Ref Expression
oprab2co.1 ((𝑥𝐴𝑦𝐵) → 𝐶𝑅)
oprab2co.2 ((𝑥𝐴𝑦𝐵) → 𝐷𝑆)
oprab2co.3 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨𝐶, 𝐷⟩)
oprab2co.4 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷))
Assertion
Ref Expression
oprab2co (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem oprab2co
StepHypRef Expression
1 oprab2co.1 . . 3 ((𝑥𝐴𝑦𝐵) → 𝐶𝑅)
2 oprab2co.2 . . 3 ((𝑥𝐴𝑦𝐵) → 𝐷𝑆)
3 opelxpi 4394 . . 3 ((𝐶𝑅𝐷𝑆) → ⟨𝐶, 𝐷⟩ ∈ (𝑅 × 𝑆))
41, 2, 3syl2anc 403 . 2 ((𝑥𝐴𝑦𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝑅 × 𝑆))
5 oprab2co.3 . 2 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨𝐶, 𝐷⟩)
6 oprab2co.4 . . 3 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷))
7 df-ov 5535 . . . . 5 (𝐶𝑀𝐷) = (𝑀‘⟨𝐶, 𝐷⟩)
87a1i 9 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝐶𝑀𝐷) = (𝑀‘⟨𝐶, 𝐷⟩))
98mpt2eq3ia 5590 . . 3 (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷)) = (𝑥𝐴, 𝑦𝐵 ↦ (𝑀‘⟨𝐶, 𝐷⟩))
106, 9eqtri 2101 . 2 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑀‘⟨𝐶, 𝐷⟩))
114, 5, 10oprabco 5858 1 (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  cop 3401   × cxp 4361  ccom 4367   Fn wfn 4917  cfv 4922  (class class class)co 5532  cmpt2 5534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator