![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpjaodan | GIF version |
Description: Eliminate a disjunction in a deduction. A translation of natural deduction rule ∨ E (∨ elimination). (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
jaodan.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
Ref | Expression |
---|---|
mpjaodan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaodan.3 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) | |
2 | jaodan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | jaodan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | 2, 3 | jaodan 743 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
5 | 1, 4 | mpdan 412 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∨ wo 661 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: mpjao3dan 1238 ifcldadc 3378 ifeq1dadc 3379 ifcldcd 3381 ordtri2or2exmidlem 4269 reg2exmidlema 4277 nndifsnid 6103 phpm 6351 fidifsnen 6355 fidifsnid 6356 fin0 6369 en2eqpr 6380 fientri3 6381 unsnfidcex 6385 unsnfidcel 6386 mullocprlem 6760 recexprlemloc 6821 z2ge 8893 fztri3or 9058 fzm1 9117 fzneuz 9118 exfzdc 9249 qbtwnzlemstep 9257 rebtwn2zlemstep 9261 modifeq2int 9388 modsumfzodifsn 9398 expaddzaplem 9519 expnbnd 9596 bcval 9676 bccmpl 9681 ibcval5 9690 bcpasc 9693 bccl 9694 resqrexlemnm 9904 resqrexlemcvg 9905 resqrexlemoverl 9907 resqrexlemglsq 9908 leabs 9960 nn0abscl 9971 ltabs 9973 abslt 9974 fzomaxdif 9999 maxleim 10091 maxabslemval 10094 minmax 10112 dvdsle 10244 mod2eq1n2dvds 10279 zsupcllemstep 10341 infssuzex 10345 gcdsupex 10349 gcdsupcl 10350 gcdval 10351 gcddvds 10355 gcdcl 10358 gcd0id 10370 gcdneg 10373 bezoutlemmain 10387 bezoutlemzz 10391 bezoutlemaz 10392 bezoutlembz 10393 dfgcd3 10399 dfgcd2 10403 nn0seqcvgd 10423 eucalgf 10437 eucalginv 10438 dvdslcm 10451 lcmcl 10454 lcmneg 10456 lcmgcd 10460 lcmdvds 10461 lcmid 10462 mulgcddvds 10476 pw2dvdslemn 10543 sqrt2irrap 10558 |
Copyright terms: Public domain | W3C validator |