![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qsss | GIF version |
Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
Ref | Expression |
---|---|
qsss | ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2604 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | elqs 6180 | . . 3 ⊢ (𝑥 ∈ (𝐴 / 𝑅) ↔ ∃𝑦 ∈ 𝐴 𝑥 = [𝑦]𝑅) |
3 | qsss.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
4 | 3 | ecss 6170 | . . . . . 6 ⊢ (𝜑 → [𝑦]𝑅 ⊆ 𝐴) |
5 | sseq1 3020 | . . . . . 6 ⊢ (𝑥 = [𝑦]𝑅 → (𝑥 ⊆ 𝐴 ↔ [𝑦]𝑅 ⊆ 𝐴)) | |
6 | 4, 5 | syl5ibrcom 155 | . . . . 5 ⊢ (𝜑 → (𝑥 = [𝑦]𝑅 → 𝑥 ⊆ 𝐴)) |
7 | selpw 3389 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
8 | 6, 7 | syl6ibr 160 | . . . 4 ⊢ (𝜑 → (𝑥 = [𝑦]𝑅 → 𝑥 ∈ 𝒫 𝐴)) |
9 | 8 | rexlimdvw 2480 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ 𝐴 𝑥 = [𝑦]𝑅 → 𝑥 ∈ 𝒫 𝐴)) |
10 | 2, 9 | syl5bi 150 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 / 𝑅) → 𝑥 ∈ 𝒫 𝐴)) |
11 | 10 | ssrdv 3005 | 1 ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 ∃wrex 2349 ⊆ wss 2973 𝒫 cpw 3382 Er wer 6126 [cec 6127 / cqs 6128 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-er 6129 df-ec 6131 df-qs 6135 |
This theorem is referenced by: axcnex 7027 |
Copyright terms: Public domain | W3C validator |