![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.29uz | GIF version |
Description: A version of 19.29 1551 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.) |
Ref | Expression |
---|---|
rexuz3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
r19.29uz | ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexuz3.1 | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | uztrn2 8636 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
3 | 2 | ex 113 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ (ℤ≥‘𝑗) → 𝑘 ∈ 𝑍)) |
4 | pm3.2 137 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
5 | 4 | a1i 9 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝜑 → (𝜓 → (𝜑 ∧ 𝜓)))) |
6 | 3, 5 | imim12d 73 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ 𝑍 → 𝜑) → (𝑘 ∈ (ℤ≥‘𝑗) → (𝜓 → (𝜑 ∧ 𝜓))))) |
7 | 6 | ralimdv2 2431 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓)))) |
8 | 7 | impcom 123 | . . . 4 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓))) |
9 | ralim 2422 | . . . 4 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓)) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) | |
10 | 8, 9 | syl 14 | . . 3 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
11 | 10 | reximdva 2463 | . 2 ⊢ (∀𝑘 ∈ 𝑍 𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
12 | 11 | imp 122 | 1 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 ‘cfv 4922 ℤ≥cuz 8619 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltwlin 7089 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-ov 5535 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-neg 7282 df-z 8352 df-uz 8620 |
This theorem is referenced by: climcaucn 10188 |
Copyright terms: Public domain | W3C validator |