ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uztrn2 GIF version

Theorem uztrn2 8636
Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
uztrn2.1 𝑍 = (ℤ𝐾)
Assertion
Ref Expression
uztrn2 ((𝑁𝑍𝑀 ∈ (ℤ𝑁)) → 𝑀𝑍)

Proof of Theorem uztrn2
StepHypRef Expression
1 uztrn2.1 . . . 4 𝑍 = (ℤ𝐾)
21eleq2i 2145 . . 3 (𝑁𝑍𝑁 ∈ (ℤ𝐾))
3 uztrn 8635 . . . 4 ((𝑀 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑀 ∈ (ℤ𝐾))
43ancoms 264 . . 3 ((𝑁 ∈ (ℤ𝐾) ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝐾))
52, 4sylanb 278 . 2 ((𝑁𝑍𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝐾))
65, 1syl6eleqr 2172 1 ((𝑁𝑍𝑀 ∈ (ℤ𝑁)) → 𝑀𝑍)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  cfv 4922  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-ltwlin 7089
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-ov 5535  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-neg 7282  df-z 8352  df-uz 8620
This theorem is referenced by:  eluznn0  8686  eluznn  8687  elfzuz2  9048  rexuz3  9876  r19.29uz  9878  r19.2uz  9879  clim2  10122  clim2c  10123  clim0c  10125  2clim  10140  climabs0  10146  climcn1  10147  climcn2  10148  climsqz  10173  climsqz2  10174  clim2iser  10175  clim2iser2  10176  climub  10182  serif0  10189
  Copyright terms: Public domain W3C validator