![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expr | GIF version |
Description: Export a wff from a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
expr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
expr | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expr.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | exp32 357 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp 122 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem is referenced by: reximddv 2464 rexlimdvaa 2478 issod 4074 ordsuc 4306 fcof1 5443 riota5f 5512 ovmpt2df 5652 tfrlemi1 5969 eqsuptid 6410 eqinftid 6434 ordiso2 6446 addnq0mo 6637 mulnq0mo 6638 genprndl 6711 genprndu 6712 addlocpr 6726 ltexprlemm 6790 ltexprlemopl 6791 ltexprlemopu 6793 ltexprlemfl 6799 ltexprlemfu 6801 aptiprleml 6829 caucvgprprlemexbt 6896 addsrmo 6920 mulsrmo 6921 prodge0 7932 un0addcl 8321 un0mulcl 8322 iseqfveq2 9448 iseqshft2 9452 monoord 9455 iseqsplit 9458 expnegzap 9510 expcanlem 9643 ibcval5 9690 caucvgrelemcau 9866 cau3lem 10000 dvds0lem 10205 dvdsnegb 10212 dvdssub2 10237 isprm6 10526 |
Copyright terms: Public domain | W3C validator |