| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnco | GIF version | ||
| Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| rnco | ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2604 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 2604 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | brco 4524 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 4 | 3 | exbii 1536 | . . . 4 ⊢ (∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑥∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 5 | excom 1594 | . . . 4 ⊢ (∃𝑥∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) | |
| 6 | ancom 262 | . . . . . . 7 ⊢ ((∃𝑥 𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑧𝐴𝑦 ∧ ∃𝑥 𝑥𝐵𝑧)) | |
| 7 | 19.41v 1823 | . . . . . . 7 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) | |
| 8 | vex 2604 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
| 9 | 8 | elrn 4595 | . . . . . . . 8 ⊢ (𝑧 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑧) |
| 10 | 9 | anbi2i 444 | . . . . . . 7 ⊢ ((𝑧𝐴𝑦 ∧ 𝑧 ∈ ran 𝐵) ↔ (𝑧𝐴𝑦 ∧ ∃𝑥 𝑥𝐵𝑧)) |
| 11 | 6, 7, 10 | 3bitr4i 210 | . . . . . 6 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑧𝐴𝑦 ∧ 𝑧 ∈ ran 𝐵)) |
| 12 | 2 | brres 4636 | . . . . . 6 ⊢ (𝑧(𝐴 ↾ ran 𝐵)𝑦 ↔ (𝑧𝐴𝑦 ∧ 𝑧 ∈ ran 𝐵)) |
| 13 | 11, 12 | bitr4i 185 | . . . . 5 ⊢ (∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
| 14 | 13 | exbii 1536 | . . . 4 ⊢ (∃𝑧∃𝑥(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
| 15 | 4, 5, 14 | 3bitri 204 | . . 3 ⊢ (∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
| 16 | 2 | elrn 4595 | . . 3 ⊢ (𝑦 ∈ ran (𝐴 ∘ 𝐵) ↔ ∃𝑥 𝑥(𝐴 ∘ 𝐵)𝑦) |
| 17 | 2 | elrn 4595 | . . 3 ⊢ (𝑦 ∈ ran (𝐴 ↾ ran 𝐵) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦) |
| 18 | 15, 16, 17 | 3bitr4i 210 | . 2 ⊢ (𝑦 ∈ ran (𝐴 ∘ 𝐵) ↔ 𝑦 ∈ ran (𝐴 ↾ ran 𝐵)) |
| 19 | 18 | eqriv 2078 | 1 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 = wceq 1284 ∃wex 1421 ∈ wcel 1433 class class class wbr 3785 ran crn 4364 ↾ cres 4365 ∘ ccom 4367 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 |
| This theorem is referenced by: rnco2 4848 cofunexg 5758 1stcof 5810 2ndcof 5811 |
| Copyright terms: Public domain | W3C validator |