ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucinc2 GIF version

Theorem sucinc2 6049
Description: Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.)
Hypothesis
Ref Expression
sucinc.1 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
Assertion
Ref Expression
sucinc2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem sucinc2
StepHypRef Expression
1 eloni 4130 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 ordsucss 4248 . . . . 5 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
31, 2syl 14 . . . 4 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
43imp 122 . . 3 ((𝐵 ∈ On ∧ 𝐴𝐵) → suc 𝐴𝐵)
5 sssucid 4170 . . 3 𝐵 ⊆ suc 𝐵
64, 5syl6ss 3011 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → suc 𝐴 ⊆ suc 𝐵)
7 onelon 4139 . . 3 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
8 elex 2610 . . . 4 (𝐴 ∈ On → 𝐴 ∈ V)
9 sucexg 4242 . . . 4 (𝐴 ∈ On → suc 𝐴 ∈ V)
10 suceq 4157 . . . . 5 (𝑧 = 𝐴 → suc 𝑧 = suc 𝐴)
11 sucinc.1 . . . . 5 𝐹 = (𝑧 ∈ V ↦ suc 𝑧)
1210, 11fvmptg 5269 . . . 4 ((𝐴 ∈ V ∧ suc 𝐴 ∈ V) → (𝐹𝐴) = suc 𝐴)
138, 9, 12syl2anc 403 . . 3 (𝐴 ∈ On → (𝐹𝐴) = suc 𝐴)
147, 13syl 14 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐴) = suc 𝐴)
15 elex 2610 . . . 4 (𝐵 ∈ On → 𝐵 ∈ V)
16 sucexg 4242 . . . 4 (𝐵 ∈ On → suc 𝐵 ∈ V)
17 suceq 4157 . . . . 5 (𝑧 = 𝐵 → suc 𝑧 = suc 𝐵)
1817, 11fvmptg 5269 . . . 4 ((𝐵 ∈ V ∧ suc 𝐵 ∈ V) → (𝐹𝐵) = suc 𝐵)
1915, 16, 18syl2anc 403 . . 3 (𝐵 ∈ On → (𝐹𝐵) = suc 𝐵)
2019adantr 270 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐵) = suc 𝐵)
216, 14, 203sstr4d 3042 1 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  Vcvv 2601  wss 2973  cmpt 3839  Ord word 4117  Oncon0 4118  suc csuc 4120  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator