ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supisoex GIF version

Theorem supisoex 6422
Description: Lemma for supisoti 6423. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
supiso.2 (𝜑𝐶𝐴)
supisoex.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
Assertion
Ref Expression
supisoex (𝜑 → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑢,𝐶,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑢,𝑤   𝑢,𝐹,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑅,𝑤,𝑥,𝑦,𝑧   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐵,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑣)   𝑅(𝑣)

Proof of Theorem supisoex
StepHypRef Expression
1 supisoex.3 . 2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
2 supiso.1 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
3 supiso.2 . . 3 (𝜑𝐶𝐴)
4 simpl 107 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
5 simpr 108 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐶𝐴)
64, 5supisolem 6421 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
7 isof1o 5467 . . . . . . . 8 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
8 f1of 5146 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
94, 7, 83syl 17 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐹:𝐴𝐵)
109ffvelrnda 5323 . . . . . 6 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
11 breq1 3788 . . . . . . . . . . 11 (𝑢 = (𝐹𝑥) → (𝑢𝑆𝑤 ↔ (𝐹𝑥)𝑆𝑤))
1211notbid 624 . . . . . . . . . 10 (𝑢 = (𝐹𝑥) → (¬ 𝑢𝑆𝑤 ↔ ¬ (𝐹𝑥)𝑆𝑤))
1312ralbidv 2368 . . . . . . . . 9 (𝑢 = (𝐹𝑥) → (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ↔ ∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤))
14 breq2 3789 . . . . . . . . . . 11 (𝑢 = (𝐹𝑥) → (𝑤𝑆𝑢𝑤𝑆(𝐹𝑥)))
1514imbi1d 229 . . . . . . . . . 10 (𝑢 = (𝐹𝑥) → ((𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣) ↔ (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1615ralbidv 2368 . . . . . . . . 9 (𝑢 = (𝐹𝑥) → (∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1713, 16anbi12d 456 . . . . . . . 8 (𝑢 = (𝐹𝑥) → ((∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
1817rspcev 2701 . . . . . . 7 (((𝐹𝑥) ∈ 𝐵 ∧ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1918ex 113 . . . . . 6 ((𝐹𝑥) ∈ 𝐵 → ((∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
2010, 19syl 14 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
216, 20sylbid 148 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
2221rexlimdva 2477 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
232, 3, 22syl2anc 403 . 2 (𝜑 → (∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
241, 23mpd 13 1 (𝜑 → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102   = wceq 1284  wcel 1433  wral 2348  wrex 2349  wss 2973   class class class wbr 3785  cima 4366  wf 4918  1-1-ontowf1o 4921  cfv 4922   Isom wiso 4923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator