ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem7 GIF version

Theorem tfrlem7 5956
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem7 Fun recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem7
Dummy variables 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem6 5955 . 2 Rel recs(𝐹)
31recsfval 5954 . . . . . . . . 9 recs(𝐹) = 𝐴
43eleq2i 2145 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐴)
5 eluni 3604 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ 𝐴 ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴))
64, 5bitri 182 . . . . . . 7 (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴))
73eleq2i 2145 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐴)
8 eluni 3604 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ 𝐴 ↔ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴))
97, 8bitri 182 . . . . . . 7 (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴))
106, 9anbi12i 447 . . . . . 6 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴)))
11 eeanv 1848 . . . . . 6 (∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴)))
1210, 11bitr4i 185 . . . . 5 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ ∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)))
13 df-br 3786 . . . . . . . . 9 (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔)
14 df-br 3786 . . . . . . . . 9 (𝑥𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ )
1513, 14anbi12i 447 . . . . . . . 8 ((𝑥𝑔𝑢𝑥𝑣) ↔ (⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ))
161tfrlem5 5953 . . . . . . . . 9 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
1716impcom 123 . . . . . . . 8 (((𝑥𝑔𝑢𝑥𝑣) ∧ (𝑔𝐴𝐴)) → 𝑢 = 𝑣)
1815, 17sylanbr 279 . . . . . . 7 (((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ) ∧ (𝑔𝐴𝐴)) → 𝑢 = 𝑣)
1918an4s 552 . . . . . 6 (((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) → 𝑢 = 𝑣)
2019exlimivv 1817 . . . . 5 (∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) → 𝑢 = 𝑣)
2112, 20sylbi 119 . . . 4 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
2221ax-gen 1378 . . 3 𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
2322gen2 1379 . 2 𝑥𝑢𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
24 dffun4 4933 . 2 (Fun recs(𝐹) ↔ (Rel recs(𝐹) ∧ ∀𝑥𝑢𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)))
252, 23, 24mpbir2an 883 1 Fun recs(𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wex 1421  wcel 1433  {cab 2067  wral 2348  wrex 2349  cop 3401   cuni 3601   class class class wbr 3785  Oncon0 4118  cres 4365  Rel wrel 4368  Fun wfun 4916   Fn wfn 4917  cfv 4922  recscrecs 5942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930  df-recs 5943
This theorem is referenced by:  tfrlem9  5958  tfrlemibfn  5965  tfrlemiubacc  5967  tfri1d  5972  tfrfun  5978  rdgfun  5983
  Copyright terms: Public domain W3C validator