ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpm GIF version

Theorem unixpm 4873
Description: The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixpm (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) = (𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unixpm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4465 . . 3 Rel (𝐴 × 𝐵)
2 relfld 4866 . . 3 (Rel (𝐴 × 𝐵) → (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))
31, 2ax-mp 7 . 2 (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))
4 ancom 262 . . . 4 ((∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴) ↔ (∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵))
5 xpm 4765 . . . 4 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
64, 5bitri 182 . . 3 ((∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
7 dmxpm 4573 . . . 4 (∃𝑏 𝑏𝐵 → dom (𝐴 × 𝐵) = 𝐴)
8 rnxpm 4772 . . . 4 (∃𝑎 𝑎𝐴 → ran (𝐴 × 𝐵) = 𝐵)
9 uneq12 3121 . . . 4 ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
107, 8, 9syl2an 283 . . 3 ((∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
116, 10sylbir 133 . 2 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
123, 11syl5eq 2125 1 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wex 1421  wcel 1433  cun 2971   cuni 3601   × cxp 4361  dom cdm 4363  ran crn 4364  Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator