![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrlelttr | GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
Ref | Expression |
---|---|
xrlelttr | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 497 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 ≤ 𝐵) | |
2 | simpl1 941 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 ∈ ℝ*) | |
3 | simpl2 942 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ*) | |
4 | xrlenlt 7177 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
5 | 2, 3, 4 | syl2anc 403 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
6 | 1, 5 | mpbid 145 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → ¬ 𝐵 < 𝐴) |
7 | 6 | pm2.21d 581 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐵 < 𝐴 → 𝐴 < 𝐶)) |
8 | idd 21 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐴 < 𝐶 → 𝐴 < 𝐶)) | |
9 | simprr 498 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 < 𝐶) | |
10 | simpl3 943 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐶 ∈ ℝ*) | |
11 | xrltso 8871 | . . . . . 6 ⊢ < Or ℝ* | |
12 | sowlin 4075 | . . . . . 6 ⊢ (( < Or ℝ* ∧ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*)) → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) | |
13 | 11, 12 | mpan 414 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) |
14 | 3, 10, 2, 13 | syl3anc 1169 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) |
15 | 9, 14 | mpd 13 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶)) |
16 | 7, 8, 15 | mpjaod 670 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 < 𝐶) |
17 | 16 | ex 113 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 ∧ w3a 919 ∈ wcel 1433 class class class wbr 3785 Or wor 4050 ℝ*cxr 7152 < clt 7153 ≤ cle 7154 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-po 4051 df-iso 4052 df-xp 4369 df-cnv 4371 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 |
This theorem is referenced by: xrlelttrd 8880 xrre 8887 xrre2 8888 iooss1 8939 iccssioo 8965 iccssico 8968 iocssioo 8986 ioossioo 8988 ico0 9270 |
Copyright terms: Public domain | W3C validator |