ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlelttr Unicode version

Theorem xrlelttr 8876
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrlelttr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem xrlelttr
StepHypRef Expression
1 simprl 497 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <_  B )
2 simpl1 941 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  e.  RR* )
3 simpl2 942 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  e.  RR* )
4 xrlenlt 7177 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
52, 3, 4syl2anc 403 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( A  <_  B  <->  -.  B  <  A ) )
61, 5mpbid 145 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  -.  B  <  A )
76pm2.21d 581 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( B  <  A  ->  A  <  C ) )
8 idd 21 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( A  <  C  ->  A  <  C ) )
9 simprr 498 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  <  C )
10 simpl3 943 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  C  e.  RR* )
11 xrltso 8871 . . . . . 6  |-  <  Or  RR*
12 sowlin 4075 . . . . . 6  |-  ( (  <  Or  RR*  /\  ( B  e.  RR*  /\  C  e.  RR*  /\  A  e. 
RR* ) )  -> 
( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
1311, 12mpan 414 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  A  e. 
RR* )  ->  ( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
143, 10, 2, 13syl3anc 1169 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
159, 14mpd 13 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( B  <  A  \/  A  <  C ) )
167, 8, 15mpjaod 670 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <  C )
1716ex 113 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    e. wcel 1433   class class class wbr 3785    Or wor 4050   RR*cxr 7152    < clt 7153    <_ cle 7154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-po 4051  df-iso 4052  df-xp 4369  df-cnv 4371  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159
This theorem is referenced by:  xrlelttrd  8880  xrre  8887  xrre2  8888  iooss1  8939  iccssioo  8965  iccssico  8968  iocssioo  8986  ioossioo  8988  ico0  9270
  Copyright terms: Public domain W3C validator