MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0wlkonlem2 Structured version   Visualization version   Unicode version

Theorem 0wlkonlem2 26980
Description: Lemma 2 for 0wlkon 26981 and 0trlon 26985. (Contributed by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.)
Hypothesis
Ref Expression
0wlk.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
0wlkonlem2  |-  ( ( P : ( 0 ... 0 ) --> V  /\  ( P ` 
0 )  =  N )  ->  P  e.  ( V  ^pm  ( 0 ... 0 ) ) )

Proof of Theorem 0wlkonlem2
StepHypRef Expression
1 ovex 6678 . 2  |-  ( 0 ... 0 )  e. 
_V
2 0wlk.v . . 3  |-  V  =  (Vtx `  G )
3 fvex 6201 . . 3  |-  (Vtx `  G )  e.  _V
42, 3eqeltri 2697 . 2  |-  V  e. 
_V
5 simpl 473 . 2  |-  ( ( P : ( 0 ... 0 ) --> V  /\  ( P ` 
0 )  =  N )  ->  P :
( 0 ... 0
) --> V )
6 fpmg 7883 . 2  |-  ( ( ( 0 ... 0
)  e.  _V  /\  V  e.  _V  /\  P : ( 0 ... 0 ) --> V )  ->  P  e.  ( V  ^pm  ( 0 ... 0 ) ) )
71, 4, 5, 6mp3an12i 1428 1  |-  ( ( P : ( 0 ... 0 ) --> V  /\  ( P ` 
0 )  =  N )  ->  P  e.  ( V  ^pm  ( 0 ... 0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   0cc0 9936   ...cfz 12326  Vtxcvtx 25874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860
This theorem is referenced by:  0wlkon  26981  0trlon  26985  0pthon  26988
  Copyright terms: Public domain W3C validator