| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2pthfrgrrn | Structured version Visualization version Unicode version | ||
| Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017.) (Revised by AV, 1-Apr-2021.) |
| Ref | Expression |
|---|---|
| 2pthfrgrrn.v |
|
| 2pthfrgrrn.e |
|
| Ref | Expression |
|---|---|
| 2pthfrgrrn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2pthfrgrrn.v |
. . 3
| |
| 2 | 2pthfrgrrn.e |
. . 3
| |
| 3 | 1, 2 | frgrusgrfrcond 27123 |
. 2
|
| 4 | reurex 3160 |
. . . . . 6
| |
| 5 | prcom 4267 |
. . . . . . . . . 10
| |
| 6 | 5 | eleq1i 2692 |
. . . . . . . . 9
|
| 7 | 6 | anbi1i 731 |
. . . . . . . 8
|
| 8 | zfpair2 4907 |
. . . . . . . . 9
| |
| 9 | zfpair2 4907 |
. . . . . . . . 9
| |
| 10 | 8, 9 | prss 4351 |
. . . . . . . 8
|
| 11 | 7, 10 | sylbbr 226 |
. . . . . . 7
|
| 12 | 11 | reximi 3011 |
. . . . . 6
|
| 13 | 4, 12 | syl 17 |
. . . . 5
|
| 14 | 13 | a1i 11 |
. . . 4
|
| 15 | 14 | ralimdvva 2964 |
. . 3
|
| 16 | 15 | imp 445 |
. 2
|
| 17 | 3, 16 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-frgr 27121 |
| This theorem is referenced by: 2pthfrgrrn2 27147 3cyclfrgrrn1 27149 |
| Copyright terms: Public domain | W3C validator |