MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthfrgrrn Structured version   Visualization version   Unicode version

Theorem 2pthfrgrrn 27146
Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017.) (Revised by AV, 1-Apr-2021.)
Hypotheses
Ref Expression
2pthfrgrrn.v  |-  V  =  (Vtx `  G )
2pthfrgrrn.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
2pthfrgrrn  |-  ( G  e. FriendGraph  ->  A. a  e.  V  A. c  e.  ( V  \  { a } ) E. b  e.  V  ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E
) )
Distinct variable groups:    G, a,
b, c    V, a,
b, c
Allowed substitution hints:    E( a, b, c)

Proof of Theorem 2pthfrgrrn
StepHypRef Expression
1 2pthfrgrrn.v . . 3  |-  V  =  (Vtx `  G )
2 2pthfrgrrn.e . . 3  |-  E  =  (Edg `  G )
31, 2frgrusgrfrcond 27123 . 2  |-  ( G  e. FriendGraph 
<->  ( G  e. USGraph  /\  A. a  e.  V  A. c  e.  ( V  \  { a } ) E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_  E ) )
4 reurex 3160 . . . . . 6  |-  ( E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_  E  ->  E. b  e.  V  { { b ,  a } ,  { b ,  c } }  C_  E
)
5 prcom 4267 . . . . . . . . . 10  |-  { a ,  b }  =  { b ,  a }
65eleq1i 2692 . . . . . . . . 9  |-  ( { a ,  b }  e.  E  <->  { b ,  a }  e.  E )
76anbi1i 731 . . . . . . . 8  |-  ( ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E )  <->  ( {
b ,  a }  e.  E  /\  {
b ,  c }  e.  E ) )
8 zfpair2 4907 . . . . . . . . 9  |-  { b ,  a }  e.  _V
9 zfpair2 4907 . . . . . . . . 9  |-  { b ,  c }  e.  _V
108, 9prss 4351 . . . . . . . 8  |-  ( ( { b ,  a }  e.  E  /\  { b ,  c }  e.  E )  <->  { { b ,  a } ,  { b ,  c } }  C_  E
)
117, 10sylbbr 226 . . . . . . 7  |-  ( { { b ,  a } ,  { b ,  c } }  C_  E  ->  ( {
a ,  b }  e.  E  /\  {
b ,  c }  e.  E ) )
1211reximi 3011 . . . . . 6  |-  ( E. b  e.  V  { { b ,  a } ,  { b ,  c } }  C_  E  ->  E. b  e.  V  ( {
a ,  b }  e.  E  /\  {
b ,  c }  e.  E ) )
134, 12syl 17 . . . . 5  |-  ( E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_  E  ->  E. b  e.  V  ( {
a ,  b }  e.  E  /\  {
b ,  c }  e.  E ) )
1413a1i 11 . . . 4  |-  ( ( G  e. USGraph  /\  (
a  e.  V  /\  c  e.  ( V  \  { a } ) ) )  ->  ( E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_  E  ->  E. b  e.  V  ( {
a ,  b }  e.  E  /\  {
b ,  c }  e.  E ) ) )
1514ralimdvva 2964 . . 3  |-  ( G  e. USGraph  ->  ( A. a  e.  V  A. c  e.  ( V  \  {
a } ) E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_  E  ->  A. a  e.  V  A. c  e.  ( V  \  {
a } ) E. b  e.  V  ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E ) ) )
1615imp 445 . 2  |-  ( ( G  e. USGraph  /\  A. a  e.  V  A. c  e.  ( V  \  {
a } ) E! b  e.  V  { { b ,  a } ,  { b ,  c } }  C_  E )  ->  A. a  e.  V  A. c  e.  ( V  \  {
a } ) E. b  e.  V  ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E ) )
173, 16sylbi 207 1  |-  ( G  e. FriendGraph  ->  A. a  e.  V  A. c  e.  ( V  \  { a } ) E. b  e.  V  ( { a ,  b }  e.  E  /\  { b ,  c }  e.  E
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-frgr 27121
This theorem is referenced by:  2pthfrgrrn2  27147  3cyclfrgrrn1  27149
  Copyright terms: Public domain W3C validator